Pollen’s contributions to Siberias forests

Main Article Content


How pollen shapes forests and forestry can be illustrated using Siberia’s boreal forests which have historically produced some of the highest pollen concentrations in the Northern Hemisphere. Pollen’s contributions are categorized as follows: 1) forests and timber, 2) nontimber products and services and 3) emerging research at the forest-atmosphere interface. Examples are drawn from Pinus sylvestris (Scots pine), Pinus sibirica (Siberian stone pine) and Pinus koreansis (Korean pine). Pine pollen is not only vital to timber and nontimber products but it serves as a well-studied model system for atmospheric studies.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
“Pollen’s Contributions to Siberias Forests”. REFORESTA, no. 9 (July 1, 2020): 107-119. Accessed August 4, 2020. http://journal.reforestationchallenges.org/index.php/REFOR/article/view/116.
Review articles


Augustin S, Wex H, Niedermeier D, Pummer B, Grothe H, Hartmann S, Tomske L, Clauss T, Voightländer J, Ignatius K, Stratmann F (2013) Immersion freezing of birch pollen washing water. Atmos Chem Phys 13: 10989-110003.
Bohne G, Richter E, Woehlecke H, Ehwald R. (2003) Diffusion barriers of tripartite sporopollenin microcapsule prepared from pine pollen. Ann Bot-London 92: 289-297.
Bohne G, Woehlecke H, Ehwald R (2005) Water relations of the pine exine. Ann Bot-London 96: 201-208.
Boucher O et al. (2013) Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contributions of Working Group I to the Fifth Assessment of Intergovernmental Panel of Climate Change. Stocker T.F. et al. eds. Cambridge University Press, Cambridge UK and New York NY USA.
Campbell ID, K McDonald, MD Flanigan, J Kringayark (1999) Long-distance transport of pollen into the Arctic Nature 399: 29-30.
Christner, BC, Cai R, Morris CE, McCarter KS, Foreman CM, Skidmore ML, Montross SN, Sands DC (2008) Geographic, seasonal, and precipitation chemistry influence on the abundance and activity of biological ice nucleators in rain and snow. Proceedings of the National Academy of Sciences 105: 18854-18859.
DeLeon-Rodriguez N et al. (2013) Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proceedings of the National Academy of Sciences 110 (7): 2575-2580. DOI: 10.1073/pnas.1212089110.
Després VR, Huffman JA, Burrows SM, Hoose C, Safatov AS, Buryak G, Fröhlich-Nowoisky J, Elbert W, Andreae MO, Pöschl U, Jaenicke R (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B 64: 1-74.
Diehl K, Matthias-Maser S, Jaenicke R, Mitra SK (2002) The ice-nucleating ability of pollen. Part II: Laboratory studies in immersion and contact freezing modes. Atmos Res 61: 125-133.
Dreischmeier K, Budko C, Wiehemeier L, Kottke T, Koop T (2016) Boreal pollen contain ice-nucleating as well as ice-binding “anti-freeze” polysaccharides. Sci Rep-UK 7: 41890. DOI: 10.1038/srep41890.
Fröhlich-Nowoisky J, Kampf CJ, Weber B, Huffman JA, Pöhlker C, Andreae MO, Lang-Yona N, Burrows SM, Gunthe SS, Elbert W, Su H, Hoor P, Thines E, Hofmann T, Després VR, Pöschl U (2016) Bioaerosols in the Earth system: climate, health and ecosystem interactions. Atmos Res 182: 346-376.
Gauthier S, Bernier P, Kuuluvainen T, Shvidenko AZ, Schepaschenko DG (2015) Boreal forest health and global change. Science 349: 819-822. Doi: 10.1126/science.aaa9092.
Golovko VV, Kirov EI, Koutenzenogii KP (1999) Seasonal and daily cycles of a pollen cloud on the south of western Siberia. J Aerosol Sci 30: S7333-S734.
Gregory P (1978) Distribution of airborne pollen and spores and their long-range transport. Pure Appl Geophys 116: 309-315.
Hader JB, Wright TP, Petters MD (2014) Contribution of pollen to atmospheric ice nuclei concentrations. Atmos Chem Phys 14: 5433-5449.
Haldane JBS (1932) The causes of evolution. Princeton University Press, Princeton NJ USA.
Heintzenberg J, Birmil W, Seifert P, Panov A, Chi X, Andreae MO (2013) Mapping the aerosol over Eurasia from the Zotino Tall Tower. Tellus B 65: 20062. DOI: 10.340/tellusb.V65i0.20062.
Hellman L et al. (2015) Timber logging in central Siberia is the main source of recent Arctic driftwood. Arct Antarct Alp Res 47: 449-460. doi:10.1657/AAAR0014-063.
Jackson S, M Lyford (1999) Pollen dispersal models in Quaternary plant ecology: assumptions, parameters and prescriptions. Bot Rev 65: 39-75.
Jaenicke R, Matthias-Maser S, Gruber S (2007) Omnipresence of biological material in the atmosphere. Environ Chem 4: 217-220.
Kukavskaya EA, Buryak LV, Ivanova GA, Conrad SG, Kalenskaya OP, Zhila SV, McRae DT (2013) Influence of logging on the effects of wildfire in Siberia. Environ Res Lett 8 045034 (11 pp) doi: 10.1088/1748-9326/8/4/045034.
Kuparinen A, Katul G, Nathan R, Schurr FM (2009) Increases in air temperature can promote wind-driven dispersal and spread of plants. Proc Roy Soc B doi: 10.1098/rspb.2009.0693.
Lindgren D, Paule L, Xihuan S, Yadzani R, Segerstrom U, Tallin J-E, Lejdebro ML. 1995. Can viable pollen carry Scots pine genes over long distances? Grana 34: 64-69.
Mandrioli P, Grazia M, Negrini G, Cesari G, Morgan G (1984) Evidence for long-range transport of biological and anthropogenic aerosol parts in the atmosphere. Grana 23: 43-53.
Manninen HE et al. (2014) Patterns in airborne pollen and other primary biological aerosol particles (PBAP) and their contribution to aerosol mass and number in a boreal forest. Boreal Environ Res 19 (Suppl B): 383-405.
Matthias-Maser S, Obolkin V, Khodzer T, Jaenicke R. (2000) Seasonal variation of primary biological aerosol particles in the remote continental region of Lake Baikal/Siberia. Atmos Env 34: 3805-3811.
Mikhail E et al. (2017) Long-term measurements (2010-2014) of carbonaceous aerosols and carbon monoxide at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia. Atmos Chem Phys doi: 10.5.94/acp-2017-409.
Murray BJ, O’Sullivan D, Atkinson JD, Webb ME. 2012. Ice nucleation by particles immersed in supercooled cloud droplets. Chemistry Society Reviews 41: 6519-6554.
Niklas KJ (1984) The motion of windborne pollen grains around conifer ovulate cones – implications on wind pollination. Am J Bot 71: 356-374.
Noh YM et al. (2012) Investigation of diurnal patterns in vertical distribution of pollen in the lower troposphere using LIDAR technique. Atmospheric Chemistry and Physics Discussion Papers 12: 31187-31204.
Parvainen P, Bohren CF, Mäkelä V (1994) Vertical elliptical coronas. Appl Optics 33: 4548-4551.
Pöhlker CA, Huffman JA, Foerster J-D, Poeschl U (2013) Autofluorescence of atmospheric bioaerosols: spectral fingerprints and taxonomic trends of pollen. Atmos Meas Tech 6: 3369-3392.
Pulkkinen P, Rantio-Lahtimaki A (1995) Viability and seasonal distribution patterns of Scots pine pollen in Finland. Tree Physiol 15:515-518.
Pummer BG, Bauer H, Bernardi J, Bleicher S, Grothe H (2012) Suspendable macromolecules are responsible for ice nucleation activity of birch and conifer pollen. Atmos Chem Phys 12: 2541-2550.
Rempe H (1937) Untersuchungen über die die Verbreitungdes Blütenstaubes durch die Luftströmungen. Planta 27: 93-147.
Rogers CA, Levetin E (1998) Evidence of long-distance transport of mountain cedar pollen into Tulsa Oklahoma. Intl J Biometeorology 42: 65-72.
Rousseau D-D, Schevin P, Duzer D, Cambon G, Ferrier J, Jolly D, Poulsen U (2006) New evidence of long distance pollen transport to southern Greenland in late spring. Rev Palaeobot Palyno 141: 272-286.
Sassen K (2008) Boreal tree pollen sensed by polarization lidar: depolarizing biogenic chaff. Geophys Res Lett 35: L18810. doi: 10.1029/2008GL035085.
Semizer-Cuming D, Krutovsky K, Baranchikov Y, Kjaer ED and Williams CG (2018) Saving the world's ash forests calls for international cooperation now. Nature Ecology & Evolution 3(2): 141. https:/doi.org/10.1038/s41559-018-0761-6.
Singh H. (1978) Embryology of Gymnosperms. Gebrüder Borntrager, Berlin and Stuttgart DE. 302 p.
Steiner AL et al. (2015) Pollen as atmospheric cloud condensation nuclei. Geophys Res Lett doi: 10.10002/2015GL064060.
Tchebakova NM, Parfenova EJ, Korets MA, Conrad SG (2016) Potential changes in forest types and stand heights in central Siberia in a warming climate. Environ Res Lett 11: 035016. doi: 10.1088/1748-9326/11/3/035016.
Tyhajarvi T, Garcia-Gil M, Knurr T, Mikkonen M, Wachowiak W, Savolainen O (2007) Demographic history has influenced nucleotide diversity in European Pinus sylvestris populations. Genetics 177: 1713-1724.
Thomas P, Farjon A (2013) Pinus koraiensis. The IUCN Red List of Threatened Species 2013: eT42373A2975987. http://dx.doiorg/10.2305/IUCN.UK.2013-1.RLTS.T42373A2975987.en.
Williams, CG (2008) Aerobiology of Pinus taeda pollen clouds. Can J For Res 38: 2177-2188.
Williams CG (2009) Conifer Reproductive Biology. Springer Publishers, Dordrecht Netherlands. 169 p.
Williams CG (2013) Forest tree pollen dispersal via the water cycle. Am J Bot 100(6): 1184-1190.
Williams CG (2017) How meso-scale pollen dispersal and its gene flow shape gene conservation decisions. New Forest 48(2): 217-224. doi 10.1007/s11056-017-9574-8.
Williams CG, Després VR (2017) Temperate and boreal forests are a substantial pollen contributor to seasonal biogenic emissions. Forest Ecol Manage 401: 187-191. Doi.org/10.1016/j.foreco.2017.06.040.
Williams CG (2020) Atmospheric layering during peak pine pollen season. Grana (in press).
Wilson AS (1879) Pine pollen and sulphur. Nature July 17 p. 266
Womack AM, Bohannan BJM, Greene JL (2010) Biodiversity and biogeography of the atmosphere. Philosophical Transaction of the Royal Society of London 365: 3645-3653.