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Abstract  

Projections of the regional climate model for Southeast Europe generally predict an 
increasing of temperature and a decrease in precipitation, with some local variations. 
Higher frequency of extreme weather events and increased flooding can also be 
expected. This climate change will, among other things, result in changes in habitats and 
species distribution, and a decrease in biodiversity. In most cases, forest ecosystems will 
be unable to adapt fast enough to keep pace with changes in climate. Extreme weather 
events and low precipitation during the growing season will cause high mortality of 
seedlings after planting. New forests will face the whole range of these changes because 
of the long lifetime of trees. Reforestation programs must take projections of climate 
change into consideration. In the long term, new guidelines for site-species matching, 
provenance selection, and genetic diversity need to be adopted. In the short term, site 
preparation, planting techniques, and post planting protection need to be improved. In 
addition, seedling quality (morphological, physiological, and genetic) and planting time 
need to be specific for each site. New site preparation, planting, and post-planting 
protection methods are useful tools for short term success measured in seedling 
survival and initial growth. Seedling quality is essential for short and long term success. 
Different strategies, such as assisted migration and increased genetic diversity of 
planting material, can provide better chances for long term success measured in growth, 
fitness, and capability to produce the next, better adapted generation.  
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1 Introduction 

Reforestation challenges are many. Except in industrial plantations, we are 
witnessing a global trend of reduced investments in reforestation. Overexploitation, 
land-use politics, forest fragmentation, and urbanization are threats to existing forests. 
In addition to the human factor, we are witnessing more frequent extreme weather 
events, the conquest of habitats by invasive tree species, migration and areal spread of 
pests and diseases, and the maladaptation of tree populations transferred to new sites. 

Afforestation, reforestation, and deforestation avoidance are three types of 
climate change mitigation projects in the forestry sector (Reyer et al. 2009). Facing 
climate change, future management plans need to integrate adaptation and mitigation 
approaches (Millar et al. 2007). Climate change mitigation is not a part of this review 
and we will focus on management approaches available in changed climate. In changed 
climate, a number of adaptation strategies are available, and need to be involved in 
current and future afforestation/reforestation projects. Forest tree populations can 
extirpate in a rapidly changing environment or can persist thorough migration or 
adaptation (Aitken et al. 2008). “Migration and adaptation are considered as alternative 
responses to environment changes because evolution allows populations to adapt to 
novel conditions without migrating, whereas migration lets populations track favorable 
conditions without evolving” (Kremer et al. 2012). Reforestation and restoration 
programs facing climate change need to consider and to promote both strategies. 

Looking into the future, climate change and the uncertainty of the environment 
following this change will be the most important challenges to reforestation success. It 
is the regeneration phase that will initially be susceptible to the changed climate 
(Spittlehouse and Stewart 2003) and additional efforts need to be invested in artificial 
regeneration of forests. To improve reforestation success, selection of species and 
genetic material as well as nursery cultural practices must focus on overcoming planting 
stress on harsh restoration sites. This can be done by enhancing the ability of seedlings 
to withstand drought, frost, vegetative competition, nutrient deficits, and animal 
damage (Jacobs et al. 2015). Additionally, planting techniques (pre planting, planting, 
and post planting operations) need to be improved in order to provide better chances 
for seedlings to survive the critical establishment phase.  

The Southeast Europe (SEE) region ranges from sea level at coastal areas and 
plains, to river valleys, karstic area, and high mountains, resulting in rich biodiversity and 
natural resources. Many SEE regions belong to the areas of Europe most vulnerable to 
climate change, where we can expect the highest future impacts of climate change to 
ecosystems, with associated impacts on biodiversity (Laušević et al. 2008). 
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In this paper, we review the scale of reforestation in SEE, discuss theoretical 
predictions of climate change and its potential influence on reforestation success, and 
finally review the literature on seedling production and planting strategies and actions 
as a response to challenges presented by climate change. Seedling survival after field 
planting is a keystone to any reforestation project. This short-term success can be 
diminished in subsequent decades due to changing environment, especially when 
mistakes occur in the planning phase. This is why, following our review on challenges, 
we first pay attention to long-term actions that promote short-term success during the 
seedling establishing phase. 

1.1 Definitions –  The frame 

SOUTHEAST EUROPE: SEE is defined in different ways, geographically and 
politically. For this review, SEE includes: Albania, Bosnia and Herzegovina, Bulgaria, 
Croatia, Greece, the Former Yugoslav Republic (FYR) of Macedonia, Montenegro, and 
Serbia (Fig. 1). This covers all countries of the Southeast Forest Country Group (Forest 
Europe 2015) except Slovenia and Turkey. 

REFORESTATION, AFFORESTATION, AND ARTIFICIAL REGENERATION: 
Definitions for the terms of reforestation, afforestation, artificial regeneration are used 
differently in different disciplines and areas of research. For the purpose of this review, 
keeping in mind that all of these terms result in planted forests (Ivetić and Vilotić 2014) 
we will refer to these terms the same, as reforestation. 

CLIMATE CHANGE AND EMISSION SCENARIO: For this review, we adopted 
definitions on climate change and emission scenarios from the Fifth Assessment Report 
of the Intergovernmental Panel on Climate Change Climate (IPCC 2014). We adopted A2 
as one of the extreme scenarios with upper limits of human-induced global warming (up 
to 250% more greenhouse gas emissions in year 2100 compared with the reference 
period 1961-1990).  

SEED SOURCE: Trees within an area from which seeds are collected (OECD 
2015). 

ORIGIN: For an indigenous seed source or stand, the origin is the place in which 
the trees are growing. For a non-indigenous seed source or stand, the origin is the place 
from which the seed or plants were originally introduced (OECD 2015). The origin of a 
seed source or stand may be unknown.  

PROVENANCE: The place in which any seed source or stand of trees is growing 
(OECD 2015).  

SEED ZONE: Geographically delineated areas within which seed can be 
transferred with little risk of loss of productivity and forest health issues due to 
maladaptation (Bower et al. 2014).  

REGION OF PROVENANCE: For a species or sub-species, the Region of 
Provenance is the area or group of areas subject to sufficiently uniform ecological 
conditions in which stands showing similar phenotypic or genetic characters are found 
(OECD 2015). 

FOREST REPRODUCTIVE MATERIAL: This includes any material that can be used 
for reforestation: seeds (cones, fruits and seeds that are intended for the production of 
plants), parts of plants (stem-, leaf- and root-cuttings, buds, scions, layers, and any parts 
of a plant that are intended for the production of plants), and intact plants (plants raised 
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by means of seeds or parts of plants; also includes plants from natural regeneration) 
(OECD 2015). 

1.2 Reforestation in Southeast Europe –  The stage 

According to the global forest resource assessment (FAO FRA 2015), the total 
forest area in SEE countries is 17.3 million ha, with forest cover rate ranging from 28% 
in Albania to 62% in Montenegro (Fig. 1, Tab. 1).  

 

Figure 1. Forest cover rate in Europe – SEE is in square (adapted from Gunia et al. 2012 – permission by authors): 
http://www.efi.int/portal/members/membership_service/benefits/forest_map_of_europe 

 

Table 1. Forest cover rates and afforested/reforested areas in SEE countries (Source: FAO FRA 2015). 

Country 

Forests 
Afforestation 

(1,000 ha) 
Reforestation – artificial 

(1,000 ha) 

Area 
(1,000 ha) 

Cover rate 
(%) 

1990 2000 2005 2010 1990 2000 2005 2010 

Albania 772 28.2     2.9 0.1 0.2  

Bosnia and 
Herzegovina 

2,185 42.8         

Bulgaria 3,823 35.2 5.8 2.7 6.0 0.3 20.3 4.1 2.8 2.3 

Croatia 1,922 34.3 1.6 0.8 0.5 0.9  0.7 0.6 1.5 

Greece 4,054 31.5         

FYR Macedonia 998 39.6     4 1.8 1.3  

Montenegro 827 61.5    0.2    0.1 

Serbia 2,720 31.1 12 1.7 1.1 2.1    0.2 

TOTAL 17,301          

http://www.efi.int/portal/members/membership_service/benefits/forest_map_of_europe
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Except Serbia and Greece, the area of planted forests in all SEE countries has 

decreased during the last 25 years (Tab. 2). These data should, however, be used 
cautiously. For example, in Serbia, comparing the FAO assessment with the last national 
forest inventory (Banković et al. 2009) showed a similar total area of planted forests; but 
positive trend with an inconceivable increase in the area of planted forests during the 
last 10 years. Similar caution should be used when examining trends on planted forests 
in Bosnia and Herzegovina and FYR Macedonia. 

 

Table 2. Trends of forest planting in SEE countries (Source: FAO FRA 2015). 

Country 
Planted forests 

(1,000 ha) 

Portion in 
total forest 

area (%) 

Planted forests (1,000 ha) 
Trend 

1990 2000 2005 2010 2015 

Albania 90 11.7 103 96 98 94 90 -0.5 

Bosnia  and 
Herzegovina 

999 45.7 1,043 999 999 999 999 -0.2 

Bulgaria 1,600* 29.3* 1,032 933 874 817   

Croatia 75 3.9 92 81 76 70 75 -0.8 

Greece 140 3.5 118 129 134 140 140 +0.7 

FYR Macedonia 105 10.5 105 105 105 105 105 0 

Montenegro 8 1    8 8  

Serbia 215 7.9 39 39 39 180 215 +7.1 

TOTAL 3,232        

*Ionov et al. 2000 

 

2 Climate change – The challenge  

2.1 Range  

The climate of SEE ranges from subtropical to continental, with a temperature 
range from 2 to 25°C and a precipitation range from 19 to 7,000 mm (Tab. 3). 
Precipitation levels follow a clear annual pattern in Albania, with the maximum in winter 
and the minimum in summer (Diku 2011). Other SEE countries followed that pattern, 
except Bulgaria and Serbia, where the maximum precipitation level is in spring and the 
minimum occurs in summer (Önol and Semazzi 2009). 

Projections of the regional climate model for SEE predict an increasing of 
temperature and a decreasing of precipitation, with some local variations. According to 
the Α2 scenario, the mean maximum temperature across SEE is projected to increase 
between 2.4 and 7°C. Except for a projected increase in some regions of Serbia of plus 
5%, a general decrease of precipitation is predicted for other SEE countries; Croatia may 
see 54% less precipitation (Tab. 3). According to projected simulations, the maximum 
decrease of precipitation (in percent) in all SEE countries will be in summer (Önol and 
Semazzi 2009), which will significantly increase the fire risk in SEE and Mediterranean 
areas (Moriondo et al. 2006). 
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Table 3. Current and projected (A2 scenario) climate in SEE. 

Country 
Latitude 

(°) 
Altitude 

(m) 

Current Prediction for 2100 

Climate T P Tp Pp 

Albania 39-43 0-2,764 S to M 7-16 600-3,000 2.9-5.3↗ -16.2 to -8.8 
Bosnia and Herzegovina 42-46 2,386 M to C 2-20* 800-2,000 2.6-6.9↗* -2.2 to - 50.5* 
Bulgaria 43 2,925 M to C 2.8-22.5* 500-2,500 2.8 to 3.2↗ -3.9 to -37.3* 
Croatia 42-47 1,831 M to C 3-17 300-1,200 2.7-7↗* -2.7 to -53.7* 
Greece 34-42 2,918 M to A 6.6-25.3* 19-316* 2.4-5.6↗* -9.2 to -48.8* 
FYR Macedonia 40-43 2,764 M to C 8-15 400-1,000 2.7-5.4↗ -5 to -21 
Montenegro 41-44 2,534 M to C 5-16 800-7,000 1.6-3.4↗ -10 to -50 
Serbia 41-47 17-2,169 S to C 3-13 600-1,000 2.4-3.8↗ -15 to 5 
RANGE 34-47 0-2,925      

*(Önol and Semazzi 2009) 
Abbreviations: S – subtropical, C – continental, M – Mediterranean, A – alpine, T – temperature (°C), P – precipitation 
(mm), Tp – predicted increase of temperature (°C), P – predicted change of precipitation (%). 

 
In addition to the significant increase of air temperature and decrease in 

precipitation, the biggest challenge to reforestation success will be the frequency, 
duration, and severity of extreme weather events. Further decreases of precipitation 
during summer, which already sees the minimum precipitation levels, will further 
increase chances for drought. We may already be witnessing some of these extreme 
events. From years 1958 to 2000 in the Eastern Mediterranean, the most significant 
temperature trends were revealed for summer, where minimum and maximum 
temperature extremes show statistically significant warming trends, together with 
increasing trends for an index of heat wave duration (Kostopoulou and Jones 2005). Out 
of seven events of the most relevant heat waves that hit the Carpathian Region 
(including Serbia and Croatia) from years 1961 to 2010, four occurred from 2000 to 2010 
(Spinoni et al. 2015). Summer 2007 was abnormally warm for many areas of SEE with 
deviations from the seasonal means exceeding 4°C in some areas but also distinct 
periods of extremely hot weather (Founda and Giannakopoulos 2009). During summer 
2007 the maximum temperature reached 44.9°C, the record value ever recorded in 
Serbia (Hydrometeorological Service of Serbia 2015) since regular measurements 
started in 1848. In year 2011, only 65% of normal, average precipitation for the period 
1971-2000 was recorded in Serbia (Ivetić 2015). The summer of 2012 was very hot and 
dry in SEE (Sippel and Otto 2014). At 19 main meteorological stations in Serbia (of 29) 
the summer of 2012 was the hottest since measurements began (Hydrometeorological 
Service of Serbia 2013). In spring 2014, heavy rains caused floods and landslides in Serbia 
and Bosnia and Herzegovina, resulting in loss of human lives and severe damages to 
infrastructure and habitats. Hydrometeorological hazard has changed in SEE including a 
distinct increase in the frequency of summer heat waves (Sippel and Otto 2014). 

2.2 Space and time –  The race  

Following climate change, the current environmental conditions on which forest 
populations are adapted will move northward and upward (Ledig and Kitzmiller 1992; 
Loarie et al. 2009; Gray and Hamann 2013). These changes are expected to be faster 
than ever before (Kirschbaum and Fischlln 1996). The main concern is that migration of 
forest populations and genes cannot keep the pace with these changes. 
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The SEE region lies between latitudes 34° and 47° N, with a distance from south 
to north of approximately 1,100 km. Elevation ranges from 0 m by the coastline to 2,925 
m at Musala peak in Bulgaria. Large mountain ranges running from north-west to south-
east cover most of the region. In the southern part of the region, evergreen vegetation 
is predominant, whereas in the north, oak and beech forests are dominant at lower 
elevations with spruce, fir, and pine in the mountains. Tree line rises from 1,800 m in 
the north to 2,300 m in the south. 

With projected warming of between 0.1 and 0.35°C per decade, tree species 
would have to migrate 1.5-5.5 km northward per year or to increase elevation by 1.5-
5.5 m per year in order to remain within similar climatic conditions (Kirschbaum and 
Fischlln 1996). Many studies of past changes have estimated natural rates of migrations 
of trees ranging from 1.26 to 1,000 m per year (Tab. 4). 

Table 4. Natural range of tree migrations. 

Range (m∙yr-1) Method Notes Source 

1.26 Forest Inventory  Bodin et al. 2013 

22-57 Forest Inventory Quercus ilex L. Delzon et al. 2013 

<100 Chloroplast DNA surveys  McLachlan et al. 2005 

130 Numerical model  Lazarus and McGill 2014 

180 
Fossil pollen data 

Fagus grandifolia Ehrh. 
King and Herstrom 1996 

156 Tsuga canadensis (L.) Carrière 

100-200 Model prediction  Iverson et al. 2004 

60-260 
Macrofossil and palaeoecological 

From northern refugia 
Feurdean et al. 2013 

115-550 From southern refugia 

<250 Current haplotype distribution 
Abies alba Mill. Cheddadi et al. 2014 

>700 Fossil pollen alone 

500-1,000 Palinological records  Kremer 2010 

1,000 Forest inventory  Woodall et al. 2009 

 
The maximum migration distance during a given time period depends on: 1) 

number of dispersal events in that time period and 2) distance covered by each event 
(Corlett and Westcott 2013). On one hand, the rate of present-day tree migrations is 
frequently slower than expected (Renwick and Rocca 2015). Bodin et al. (2013) found 
that only 2 out of 31 tree species studied were migrating fast enough to keep pace with 
temperature changes. On the other hand, estimates on long distance gene flow suggest 
that genes can move over spatial scales larger than habitat shifts predicted under 
climate change within one generation (Kremer et al. 2012). 

Estimations on speed of climate changes and migration rate of tree species vary 
depending on input data and methodology. From the literature, we conclude that most 
tree species in SEE will not be able to keep pace with climate change under current 
scenarios. The region’s geography is one obstacle to migration of tree species. Even if 
the Carpathian Mountains provide a natural corridor for migration to the north-east, the 
Pannonian Basin is an obstacle for migration of mountain tree species northward. 
Additional obstacles will include habitat fragmentation, unsuitable soil conditions (both 
depth and nutrients), and absence of beneficial microorganisms, such as mycorrhizae. 
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3 Long-term strategies –  Theoretical actions 

3.1 Goals and objectives: Site specific or species specific projects?  

Setting the right goals and choosing an appropriate strategy to achieve them is 
essential for long-term reforestation success. In this sense, we need to distinguish site 
specific from species specific projects. Preserving a forest at a specific site will differ 
from translocation of specific species for conservation purposes. The main difference is 
that in site specific projects we need to match appropriate species and provenance with 
the focal site, whereas in species specific projects we need to find the best site for focal 
species. Although both types of projects rely on site-species matching, tools and 
available materials differ. 

3.2 Site-specific projects  

Site specific projects generally occur when the goal is afforestation of bare land 
or reforestation following harvesting or disturbances such as forest fire. Artificial or 
assisted natural regeneration also can be considered as site specific projects. In these 
types of projects, selection of the most appropriate species is essential for success and 
the only way this can be properly done is by investigating all environmental conditions 
on the site at the very beginning. 

Despite a wide range of forest functions, the main goal of a site specific project 
can be prevailing productive, conservative or ameliorative. However, the uncertainty of 
future conditions will bring these goals closer together. The main goal determines the 
selection of appropriate planting material (species, provenance, level of genetic 
diversity).  

In the case of a productive goal, the new genes (species, provenances) can be 
introduced with the aim to exploit the focal site production capacity to the highest 
amount. Many examples show higher productivity of non-local provenances 
(Schmidtling and Myszewski 2003; Ivetić et al. 2005; Krakowski and Stoehr 2009) and 
non-native species (Heryati et al. 2011; Kawaletz et al. 2013; Guo and Ren 2014; Kjær et 
al. 2014) compared to local populations at a specific site. Non-native species could play 
an important role in cases where they provide short-term benefits to ecosystem 
function and promote the potential for longer-term succession to native species, but 
this practice is controversial and debated vigorously (Thomas et al. 2014; Jacobs et al. 
2015). 

In the case of a conservative goal, the goal, priority is to maintain the existence 
and sustainability of the forest ecosystem. The usual practice is to reintroduce the same 
species using local forest reproductive material because that material is best adapted to 
the local conditions. Maintaining the current state or restoring a previous forest 
composition will be difficult in a changing environment. This is why the primary objective 
of forest restoration should be focused on functional ecosystems at the landscape level 
(Stanturf et al. 2014). 

In case of an ameliorative goal in SEE, degraded forest is usually removed by a 
clear-cut harvesting and traditionally planted with fast-growing pioneer species (usually 
Pinus nigra Arnold) with a goal of facilitating the introduction of late-successional 
hardwoods (Stilinović 1991). Plantations established on sites more productive than that 
actually needed to support Pinus nigra are characterized by rapid succession dynamics 
of mainly broadleaved species (Zlatanov et al. 2010). 
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3.2.1 Species selection  

Most forest sites can support more than one tree species, which allows selection 
of the best species to meet project goals. Species selection in a reforestation project is 
a complex decision that should be based on site conditions, environmental issues, 
economic criteria, and climate change predictions. “Species choice in large-scale 
reforestation programs should be determined by the maintenance of the realized niche 
under most climate change scenarios, avoiding potential exposure of forest trees to 
pests and diseases under a continued warming trend” (Gray and Hamann 2011). 

Species biological characteristics should be considered as well. For example, the 
water-acquisition strategy of tree root systems can determine the survival capacity 
under severe drought. Deep-rooted species are highly recommended for reforestation 
in dry conditions, even under low soil water availability (Ovalle et al. 2015). The hydric 
model of plant water use behavior is potentially useful in selecting appropriate species 
in arid to semi-arid conditions (Kjelgren 2010). Quercus ilex trees, which showed a more 
anisohydric behavior, replace Pinus sylvestris L., which showed a typical isohydric 
behavior in a montane Mediterranean forest in association with recent episodes of 
drought-induced mortality (Aguade et al. 2015). 

Table 5. Heat degrees (coordinate E) as combination of slope and aspect (Lujić 1960). 

Aspect Slope (%) Coordinate E Aspect Slope (%) Coordinate E 

N 

0-7 7 

NNE, NNW 

0-12 7 

8-23 6 13-29 6 

24-38 5 30-44 5 

39-55 4 45-65 4 

56-75 3 66-90 3 

76-107 2 91-133 2 

108-183 1 134-173 1 

NE, NW 

0-18 7 

ENE, WNW 

0-25 7 

19-36 6 26-55 6 

37-58 5 56-93 5 

59-90 4 94-148 4 

91-133 3 149-173 3 

134-173 2 
ESE, SSW 

0-143 7 

E, W 

0-47 7 144-173 6 

48-119 6 
SSE, SSW 

0-14 7 

120-173 5 15-173 8 

Flat 0 7 

S 

0-12 7 

SE, SW 

0-13 7 13-51 8 

14-52 8 52-107 9 

53-60 7 108-173 8 

Table 6. Heat degrees (coordinate V) based on altitude (Lujić 1960). 

altitude 0-199 200-
399 

400-
599 

600-
799 

800-
999 

1,000-
1,199 

1,200-
1,399 

1,400-
1,599 

1,600-
1,800 

coordinate V 9 8 7 6 5 4 3 2 1 

 
In Serbian reforestation programs, species selection is usually based on: 1) 

potential vegetation, 2) ecological differentiation, and 3) local heat potential. Species 
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selection based on potential vegetation is limited to a small area with uniform 
environmental conditions. This method requires recognition of natural vegetation in 
nearby surroundings and reconstruction of potential natural vegetation at the focal site 
(Tomić et al. 2011). Species selection based on ecological differentiation is 
multidisciplinary approach relying on basic forest types ― ecological units (Jović et al. 
1998) ― defined by three coordinates: dominant species, current vegetation, and soil 
properties. The local heat potential combines heat coordinates of slopes/aspects and 
altitude (Lujić 1960) and is usually used for afforestation of bare lands. The first heat 
coordinate (E) covers all possible combinations of slope and aspect, grouped in nine heat 
degrees, according to total annual sum of solar radiation (Tab. 5). The second heat 
coordinate (V) depends on altitude, with coldest sites on tree line (Tab. 6). As the result, 
the coldest sites will have values of coordinates of 1,1; and the warmest site will have 
combination of 9,9. When local heat potential is defined for focal planting site, it is 
necessary to find sites with the same local heat potential and natural vegetation. It is 
assumed that the dominant tree species at site with similar value of local heat potential 
will be well adapted for focal planting site. 

Species selection is even more complicated when establishing mixed forests. For 
species with similar light requirements, small climate-induced differences in sapling 
growth can lead to significant differences in future species composition, but in mixtures 
of species with different light requirements, shade-tolerance has a more decisive effect 
(Ameztegui et al. 2015). In order to offer some tool for species selection, a hybrid Delphi-
AHP methodology is proposed for species selection for reforestation in the 
Mediterranean region of Spain, which provides an optimal percentage distribution of 
the appropriate species to be used in reforestation planning (Curiel-Esparza et al. 2015). 

3.2.2 Provenance selection 

Long-term reforestation success depends on appropriate seed source 
(provenance) selection. Variation between populations may be clinal or ecotypic and 
knowledge on pattern of variation is important for seed transfer. Forest tree species are 
highly heterozygous and the most of total genetic variation can be found within 
populations (provenances). Provenances can, however, respond differently to climate 
change. Pseudotsuga menziesii (Mirb.) Franco growth response to climate change was 
dependent on seed source climate, with the mean temperature of the coldest month as 
the most sensitive indicator (Leites et al. 2012). The same study showed that all 
populations had optimum height growth when transferred to climates with warmer 
winters. Population differentiation (with high levels of genetic variation within 
populations) along temperature gradients is generally stronger for cold adaptation traits 
than for other quantitative traits and allozymes, indicating that these traits appear to be 
under strong natural selection (Howe et al. 2003). 

Current seed transfer guidelines are based on the assumption that local tree 
populations are optimally adapted to environments in which they occur; this does not 
consider climate. However, this key assumption may no longer be valid (Gray and 
Hamann 2011). Changing climate conditions will complicate efforts to match seed 
sources with the site environments to which they are best adapted (Potter and Hargrove 
2012). Two approaches for matching provenances to planting site facing climate change 
are suggested: climate envelope models and empirical response functions.  
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Climate envelope models compare the climate of seed sources and potential 
planting sites. Beaulieu and Rainville (2005) proposed a methodology combining a 
biophysical site index model and a seed source transfer model based on temperature 
and precipitation for identifying the most productive seed source of Picea glauca 
(Moench) Voss. Gray and Hamann (2011) used bioclimatic modeling and multivariate 
approaches to identify the best matching seed sources for current and projected 
climates in Alberta, Canada. Potter and Hargrove (2012) developed quantitative 
ecoregion outputs in the form of similarity maps that can be used in cases of: 1) 
unidirectional seed transfer from a given location toward colder climate conditions, and 
2) composite provenancing, for finding sources ecogeographically matched to focal site. 
In their meta-analysis based on long-term growth data of 2,800 provenances transferred 
to 120 European test sites, Isaac-Renton et al. (2014) used bioclimate envelope models 
developed for North America to guide assisted migration under climate change to 
retrospectively predict the success of these provenance transfers to Europe, with partial 
success. The model was generally successful in predicting the best performing 
provenances along north-south gradients in Western Europe, but failed to predict 
provenances with superior performance in Eastern Europe (Isaac-Renton et al. 2014). 
“An important criticism of bioclimate envelope models is that many wide-ranging 
species consist of locally adapted populations that may all lag behind their optimal 
climate habitat under climate change, and thus should be modeled separately” (Gray 
and Hamann 2013). For 15 wide-ranging forest tree species in western North America, 
Gray and Hamann (2013) found that on average populations already lag behind their 
optimal climate niche by approximately 130 km in latitude, or 60 m in elevation. They 
suggest using a general formula where a 100 km shift northward is equivalent to an 
approximately 44 m shift upward in elevation to guide assisted migration of planting 
stock in reforestation programs. This emphasizes the need for knowledge on species 
genetic variability at the provenance level and the importance for further research on 
tree species of SEE.  

Empirical response functions are based on correlations of quantitative traits 
with climate variables using climate-response functions. This approach combines 
genetic and geographic information by analyzing geographic patterns of adaptive and 
neutral genetic variation. Wang et al. (2010) presented a single "universal response 
function" (URF), which integrates genetic and environmental effects, to predict the 
performance of any population of Pinus contorta Douglas growing in any climate. They 
concluded that URF can be used as a mechanistic model to predict population and 
species ranges for the future and to guide assisted migration of seed for reforestation, 
restoration, or afforestation and genetic conservation in a changing climate. Hamann et 
al. (2011) used multivariate regression tree analysis in two case studies for Populus 
tremuloides Michx. and Alnus rubra Bong. and concluded that this approach enabled a 
better-informed subjective decision on how seed transfer should be regulated. Finally, 
after comparison of the growth performance of the selected best performing 
populations with URF to populations identified through a climate envelope approach, 
Chakraborty et al. (2015) concluded that population recommendations based on 
empirical approaches were preferred.  

In addition to matching the provenance to the focal site, many other 
provenancing strategies have been suggested as response to predicted climate change 
(Tab. 7). Breed et al. (2012) developed a decision tree for selection of a provenancing 
strategy (local, predictive, composite, and admixture) based on confidence surrounding 
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climate change distribution modeling and data on population genetic and/or 
environmental differences between populations. No single strategy is likely to work 
universally, so selection of provenancing strategy should consider species genetic 
variation and local adaptation combined with climate projections for focal site. 

Table 7. The synopsis on provenancing strategies. 

Strategy Short description Advantages Disadvantages Best to use Source 

Local 
provenancing 

Collection of seeds 
very close to the focal 

site. 
Risk level depends on 

original population 
size. 

No risk of 
maladaptation and 

outbreeding 
depression. 

Low failure rates. 
 

Risk of genetic 
drift. 

Low production of 
new genotypes. 

Conditions driving 
local adaptation 

can change. 

Where only local 
populations 

remain and no 
large change of 
distribution is 

predicted. 

Broadhurst et al. 
2008; 

Breed et al. 2012; 
Sgró et al. 2011 

Predictive 
provenancing 

Use of genotypes that 
are determined to be 
adapted to projected 

conditions. 
Requires data on local 

adaptation of many 
populations. 

Requires climate 
projections for the 
target species and 

planting site. 

Low risk of 
maladaptation, 

inbreeding 
depression and 

outbreeding 
depression. 

Low risk of failure 
if seed source is 

matched well with 
predicted 

environments. 

High risk of failure 
if seed source is 
poorly matched 
with predicted 
environments. 
Lack of data on 
local adaptation 
for most species. 

Uncertainty of 
climate change 

predictions. 

For species 
expressing local 

adaptation to 
environmental 

variables. 
 

Sgró et al. 2011; 
Breed et al. 2012 

Composite 
provenancing 

Mimic natural gene 
flow patterns by use 
of seed mixture from 

populations at various 
distances to the focal 

site. 

Encourages 
production of new 

genotypes, 
potentially 

facilitating rapid 
adaptation to 

novel conditions. 

Using seed from 
distant source 
may result in 

maladaptation to 
local conditions. 

Outbreeding 
depression risk. 

Where no 
significant range 

shifts is predicted 
and only small 

local populations 
remain. 

Broadhurst et al. 
2008; Breed et al. 

2012 

Admixture 
provenancing 

Collection of seeds 
from wide array of 

provenances, 
capturing a wide 

selection of genotypes 
from various 

environments with no 
spatial bias towards 

the focal site. 

Build evolutionary 
resilience, by 

introduction of 
more additive 

genetic variation. 
 

Risk of introducing 
invasive 

genotypes. 
High risks of 
introducing 

maladapted seed. 
High risk of 

outbreeding 
depression. 

 

Where drastic 
changes are 
confidently 

predicted, but 
growth data is 

lacking. 
 

Breed et al. 2012 

Climate-
adjusted 

provenancing 

Combine genetic 
diversity and 

adaptability, targeting 
projected climate 
change directions. 
Collection of seeds 
biased toward the 

direction of predicted 
climatic change, but 
not exclusive to it. 

Enhance climate-
resilience of 

planting material 
by mixing 

genotypes from a 
climatic gradient, 

including local 
genotypes as well. 

Risk of 
outbreeding 
depression. 

Risk of disruption 
of local adaptation 

to non-climatic 
factors. 

Where data on 
inter-population 
genetic variation 

are available. 

Prober et al. 2015 

In SEE, additional research on genetic variation and local adaptation of targeted 

species is required, especially for those with small populations and limited or disjunctive 

ranges. Due to limited area and restricted south to north distances in SEE countries, 
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foresters need to “look over the fence” in search of the best provenance to match with 

their focal sites. Seed transfer guidelines should allow and encourage movement of 

forest reproductive material across administrative and state borders. 

3.3 Species-specific projects  

Although species-specific projects are usually related to industrial tree 
plantations, we will focus on species translocation for conservation purposes. In these 
types of projects, the search is for the best site for focal species according to soil 
characteristics and projections of future climate. Facing climate change, the biggest 
challenge will be to match species to site, both spatially and temporally. For long-term 
success, future species and their sites must be selected based on predicted conditions 
that will support the species, realizing that conditions on those future sites may 
currently limit seedlings survival. 

Species-specific projects often require colonization of new sites and areas where 
focal species are not currently found. This is possible thanks to fact that for many tree 
species the fundamental niche (conditions that a species can tolerate) is much larger 
than the realized niche (conditions where it is naturally established) (Gray and Hamann 
2011). Realized niche of trees may be determined by the ability of seedlings to survive, 
but tree species can be successfully grown on new areas given to cultural treatments 
(Gray and Hamann 2011), which will be discussed in the section discussing short-term 
actions. 

In SEE, long-lived, rare, geographically and genetically isolated species like Picea 
omorika (Pančić) Purk. and Pinus heldraichii H. Christ, are the most vulnerable to climate 
change. At the worst case scenario for them, the most appropriate sites should be found 
and colonized in order to prevent their expiration in the following decades. 

3.3.1 Assisted migration 

Assisted migration has been defined in the literature with number of terms (for 
detail review see Dumroese et al. 2015). For purpose of this paper, we will adopt 
definition of the assisted migration as intentional movement of forest reproductive 
material facing climate change. The practice of transferring forest reproductive material 
has a long tradition. Seed zones and regions of provenances have been established and 
seed transfer guidelines developed for most of the important tree species in SEE, but 
these will need to be adapted to meet projections of future climate change. Assisted 
migration can occur within a species current range, but species specific projects may 
require using assisted migration to rescue a species (Pedlar et al. 2012) or to transfer a 
species just beyond its current range (assisted range expansion) or quite distant from its 
current range (assisted species migration) as defined by Williams and Dumroese (2013).  

Although assisted migration is controversial (Pedlar et al. 2012), its use has 
already been adopted by some forest administrations. The Canadian provinces of British 
Columbia, Alberta, and Quebec have altered seed transfer rules to allow assisted 
migration (Pedlar et al. 2011). Similar to any transfer of forest reproductive material, 
risks of maladaptation in assisted migration increase with movement distance. This 
distance can be geographic, climatic, and/or temporal and will depend on goals, the 
target species and populations, location, projected climatic conditions, and time 
(Williams and Dumroese 2013). In order to reduce risks, Gray et al. (2011) propose that 
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three conditions should be met before implementing assisted migration in reforestation 
programs: (1) evidence of a climate-related adaptational lag, (2) observed biological 
impacts, and (3) robust model projections to target assisted migration efforts. 

Assisted migration is an appropriate strategy for facing climate change in the 
SEE, considering the differences in the pace of climate change and the natural migration 
of tree species. Large scale assisted migration is unlikely due to limitations in northwards 
and upwards distances but this strategy should be implemented in a small scale. 
Legislation changes will be needed to allow and define application of assisted migration 
at regional level, but these changes need to be supported by more research results for 
tree species growing in SEE. 

4 Short-term tactics –  Field actions 

The long-term success of reforestation depends on field success of planting 
material. All long-term strategies and planning are wasted if seedlings fail to survive. 
Because of that, seedling survival rate is usually used as a measure of initial success of 
reforestation during the establishment phase (Ivetić 2015). This is why propagation and 
field establishment techniques must promote survival through seedling stress resistance 
and site preparation (Jacobs et al. 2015). In this section we offer a review of techniques 
that can promote seedling survival in SEE reforestation programs. 

4.1 Planting material  

High quality planting material (genetically, physiologically, and morphologically) 
improves the likelihood of reforestation success with the uncertainty of changing 
environments. Selection of planting material for any reforestation program depends on 
management goals, site conditions, and planting conditions, but unfortunately is too 
often solely based on the material available in nurseries. Between these selection 
criteria, site conditions will have a decisive effect on seedling survival. In afforestation 
projects, environmental conditions at the planting site can be diametrically opposed, 
e.g. rocky terrain and abandoned agricultural land. In reforestation projects, differences 
between site conditions are less pronounced, with the largest differences occurring 
between a mature forest site before and after clear-cut harvesting. Primary ecosystem 
functions such as energy, hydrologic, and nutrient cycles are altered in transition from 
climax forest to a clear-cut forest regeneration site (Grossnickle 2000), and this change 
can increase differences in environmental conditions between sites. These differences 
in site conditions should define the main goals of nursery production: vigorous, site 
adapted, and project specific seedlings.  

Selection of the appropriate stocktype is important, especially on harsh site 
conditions. Stocktype basically describes a seedlings’ age and production method, but 
generally production method has the stronger effect on seedlings quality and field 
performance. In their review on bareroot versus container stocktypes, Grossnickle and 
El-Kassaby (2016) found that container seedlings have a higher survival in a predominant 
number of trials (61%) than bareroot trials (15%). However, stocktype had a minimal 
effect under optimal site conditions (Sloan et al. 1987; South et al. 2005), while container 
seedlings generally have greater survival and growth on harsh sites (Barnett and 
McGilvray 1993; South et al. 2005). 
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The Target Plant Concept (Landis 2011; Dumroese et al. 2016) should be 
adopted and implemented in reforestation programs in SEE. This means that a project 
specific definition of seedling quality and nursery culture must be made to produce 
seedling with attributes that promote field survival and growth. Although physiological 
attributes can provide more accurate evaluation of seedling quality (Jacobs et al. 2004a; 
Davis and Jacobs 2005), in SEE nursery operation and reforestation programs, a seedling 
quality assessment is almost exclusively based on morphological attributes.  

4.1.1 Morphological seedling quality attr ibutes and field performance  

Many studies show the relationship between seedlings morphological attributes 
at planting time and after planting success (Thompson 1985; Mexal and Landis 1990; 
Noland et al. 2001; Villar-Salvador et al. 2004a; Mexal et al. 2009; Oliet et al. 2009; 
Grossnickle 2012). Morphological attributes can forecast seedling field performance 
(Tab. 8) with different reliability and for different numbers of years after planting (Jacobs 
et al. 2005; South et al. 2005; Tsakaldimi et al. 2012; Ivetić et al. 2016). 

Table 8. The synopsis of morphological seedling quality attributes effect on field performance. 

Morphological attribute Effect Source 

Shoot height 

Positive. 

Kaczmarek and Pope 1993; Dey and Parker 1997; Puertolas 
et al. 2003; Gould and Harrington 2009; Oliet et al. 2009; 
Cuesta et al. 2010; Pinto et al. 2011; Villar-Salvador et al. 

2012 

Negative.* 

Larsen et al. 1986; Boyer and South 1987; Tuttle et al. 
1988; Rietveld and Van Sambeek 1989; van den Driessche 

1991; Thompson and Schultz 1995; McTague and Tinus 
1996; Ivetić et al. 2016 

Root collar diameter (RCD) Positive. 
Dey and Parker 1997; South and Mitchell 1999; Ward et al. 
2000; South et al. 2005; Mexal et al. 2009; Oliet et al. 2009; 

Tsakaldimi et al. 2012; Ivetić et al. 2016 

Root system size Positive. 
Thompson and Schultz 1995; Rose et al. 1997; Ward et al. 
2000; Davis and Jacobs 2005; Jacobs et al. 2005; Wilson et 

al. 2007; Ivetić et al. 2016 

Height:RCD ratio 

Positive. Li et al. 2011; Tsakaldimi et al. 2012 

Negative. 
Johnson and Cline 1991; van den Driessche 1991; Bayley 
and Kietzka 1997; Sharma et al. 2007; Ivetić et al. 2016 

Shoot-to-root dry weight 
ratio 

Negative. 
Larsen et al. 1986; Boyer and South 1987; van den 

Driessche 1991; Ivetić et al. 2016 

Dickson quality index Positive. Tsakaldimi et al. 2012; Ivetić et al. 2016 

* on droughty sites 
 

A higher survival of shorter seedlings on droughty sites was explained by 
reduced water stress (Rose et al. 1993; Stewart and Bernier 1995) due to their lower 
shoot-to-root ratio (Grossnickle 2005a; Grossnickle 2012) and larger root systems 
(Burdett 1990; Grossnickle 2005b). Root collar diameter is a seedling attribute that 
forecasts survival and growth (Thompson 1985; Mexal and Landis 1990; Mattsson 1996) 
and reported as a better measure of seedling quality than shoot height (Chavasse 1977; 
Dey and Parker 1997; Ivetić et al. 2013). Larger RCD indicates larger root system size 
(Ritchie 1984; Grossnickle 2000; Grossnickle 2012) and this combination of plant 
attributes can provide resistance against drought and heat damage (Grossnickle and 
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Folk 1993). Root system size determines the potential for water uptake prior to new 
root growth (Carlson 1986), which is a central process in overcoming transplant (water) 
stress and seedling establishment (Burdett 1990). 

4.1.2 Nursery culture that promote target seedlings attributes  

Better understanding and implementation of nursery cultural practices to 
improve seedling quality will enable better matching of seedlings to forest sites (Duryea 
1984). In Table 9 we offer a synopsis of suitable nursery cultural practices for SEE 
nurseries that promote target seedling attributes and field performance. Some of these 
practices differ between species and stocktypes, e.g. between hardwoods and conifers 
and between bareroot and container seedlings. 

Table 9. The synopsis of the nursery cu lture that  promote target  seedl ings  att r ibutes . 

Practice Effect Source 

Early spring sowing Increase seedling size. 
Duryea 1984; Thompson 1984; Mexal and South 

1991; Viherä-Aarnio et al. 2005 

Lower seedbed/container 
densities 

Increase root collar diameter, with or 
without reducing height, increase dry 

weights and decrease shoot-to-root ratio, 
improve field performance. 

Shipman 1964; Menzies et al. 1985; Barnett and 
Brissette 1986; Nebgen and Mayer 1986; Rowan 

1986; Ward and Johnston 1986; Mexal and Simpson 
1991; South 1993; Simpson 1994; Peterson 1997; 
Jinks and Mason 1998; South et al. 2005; Williams 
and Stewart 2006; Carneiro et al. 2007; Ivetić and 

Škorić 2013; Aghai et al. 2014 

Drought conditioning 

Improve water status, stomatal 
conductance, and reduce transplant shock 

by inducing morphological changes and 
acclimating the seedlings to field conditions. 

Duryea 1984; Chirino et al. 2009; Vilagrosa et al. 
2003; Guarnaschelli et al. 2006; Villar-Salvador et al. 

2004b 

Fall fertilization and nutrient 
loading 

Increase field survival and growth by 
improved shoot and root growth, and the 

overall nutritional status of seedlings; 
increase frost resistance. 

Duryea 1984; Timmer and Aidelbaum 1996; Timmer 
1997; Villar-Salvador et al. 2005; Oliet et al. 2005; 
Oliet et al. 2009; Chirino et al. 2009; Cuesta et al. 

2010; Villar-Salvador et al. 2012; Andivia et al. 2014; 
Jacobs 2014; Li et al. 2016 

Wrenching and root pruning 

Induce budset and hardening, decrease 
height and increase root system size, 

decrease shoot-to-root ratio, and increase in 
survival rate. 

Tanaka et al. 1976; Duryea 1984; Stein 1984; Hobbs 
et al. 1987; Buse and Day 1989; Kainer and Duryea 

1990; Mexal and South 1991; Hipps et al. 1996; 
Grossnickle 2012 

Transplant seedlings 
Increase root system fibrosity, increase root 

collar diameter, decrease shoot-to-root 
ratio. 

Duryea 1984; Owston 1990; Deans et al. 1990; Rose 
et al. 1993 

Larger and deeper 
containers 

Increase root growth, decrease root system 
deformity, promotes survival on droughty 

sites. 

Chirino et al. 2008; Haywood et al. 2012; Jelić 2012; 
Pinto et al. 2011; Pinto et al. 2012; Ivetić and Škorić 

2013; Regan et al. 2015; Pinto et al. 2016 

Hydrogel amendment 
Improve seedling water status and 

photosynthetic performance of drought-
stressed seedlings. 

Chirino et al. 2011; Jamnická et al. 2013 

Inoculation with mycorrhizal 
fungi 

Improve seedling growth; improve field 
performance. 

Querejeta et al. 1998; Dominguez et al. 2006; Rincon 
et al. 2007 

Inoculation of seed with 
plant growth promoting 

rhizobacteria 

Improve seedling growth*; promote 
mycorrhization. 

Chanway and Holl 1991; Duponnois and Garbaye 
1991; Shishido et al. 1996a; Shishido et al. 1996b; 

Dunstan et al. 1998; Dominguez et al. 2012 

*Emergence-stimulating bacteria have species specific effect (Enebak et al. 1998) and may inhibit subsequent seedling growth of Picea 
glauca (O’Neill et al. 1992). 
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4.2 Pre-planting-site preparation  

Site environmental conditions have a decisive influence on seedling field 
performance during the establishment phase (Hobbs 1992; Grossnickle 2000). The key 
to successful reforestation is quality site preparation followed by planting (Ehrentraut 
and Branter 1990). Pre-planting site preparation should provide advantage to the 
seedlings after planting, by controlling competitive vegetation, and by promoting access 
to water and root growth. A seedling’s ability to overcome planting stress is affected by 
its root system size and distribution, root–soil contact, and root hydraulic conductivity 
(Grossnickle 2005b), which emphasizes the importance of proper soil preparation and 
water harvesting. It is a generally accepted principle in SEE that the objectives of site 
preparation should be achieved with minimal disturbance. 

REMOVING OBSTACLES AND HARVEST RESIDUES: Removing obstacles (i.e. 
stones) and residue (i.e. stumps) enables planting the total area with a regular layout 
and spacing, thus allowing easy movement on the site. Removing obstacles and residue 
can be done mechanically or manually; organic residuals after harvesting are usually 
burned either on-site or chipped and removed for energy production, which can reduce 
site preparation cost and generate extra revenue (Yoshida et al. 2015). As an alternative 
to their removal, rearrangement of obstacles and harvest residuals can promote 
seedling survival by creating the favorable micro-site conditions. Seedling shaded by a 
stump, log, or large rock tend to grow better on dry sites than those not shaded (Landis 
et al. 2010). The survival of Pinus sylvestris and P. nigra was remarkably higher when 
planted on the north side of spiny shrubs (Castro et al. 2002).  

VEGETATION CONTROL: Competitive vegetation can be controlled chemically, 
mechanically, and manually. Chemical vegetation control in forest is limited or restricted 
in many regions. Vegetation management by non-chemical means is most critical and 
effective during site preparation as well as after crop establishment (Ehrentraut and 
Branter 1990). Mechanical site preparation often results in improved seedling survival 
and growth, but only intensive methods with much soil disturbance are an effective tool 
for controlling competing vegetation (Löf et al. 2012). Mechanical and chemical site 
preparation combined provides the best results. After five years of weed control 
treatment, site preparation by plowing and harrowing did not result in increased growth 
of Quercus macrocarpa Michx., but growth was superior when this mechanical site 
preparation was combined with a simazine herbicide application (Cogliastro et al. 1997). 

SOIL PREPARATION: The usual methods of soil preparation in SEE countries are 
subsoiling, mechanical terracing, and mechanical or manual preparation of planting 
holes. On karst terrains in Croatia, afforestation by Pinus nigra and P. pinaster Aiton after 
subsoiling resulted in higher survival and growth rates compared to planting in pickaxe, 
and mechanically drilled holes (Tomašević 1994). Subsoiling with a bulldozer promoted 
higher survival of Pinus halepensis Miller (Barberá et al. 2005; Jelić 2012), Quercus ilex 
(Palacios et al. 2009, Jelić 2012), Cupressus sempervirens var. pyramidalis L., Pinus 
pinaster, and Pinus pinea L. (Jelić 2012) than holes made with an excavator in 
reforestation of a semiarid Mediterranean ecosystem. On some extreme sites with a 
shallow soil layer, explosives can be used for breaking the bed rock and creating an initial 
opening for a planting hole. At planting time, these holes are filled with soil from nearby 
forests. Used for afforestation of container Pinus nigra seedlings in Serbia, reported first 
year survival rate was 100% (Škorić et al. 1997) and 15 years after planting, this 
afforestation is considered successful (Fig. 2). 
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Figure 2. Successful afforestation at Mt Goč in Central Serbia, following creation of planting holes using explosives. 

WATER HARVESTING: Many techniques for harvesting water are described 
(Critchley and Siegert 1991; Prinz 1996; Mishra et al. 2011). In most of them, the basic 
principle is to make a reverse slope, usually done by different versions of bench 
terracing. Reverse slopes made during soil and planting spot (or hole) preparation can 
intercept runoff and redirect water to the seedling, and reduce runoff erosion by 
creating sinks along the slope (Fig. 3). Furthermore, the bench terraces significantly 
increase soil carbon stock compared to the soils between the bench terraces and soils 
planted by manual hole preparation (Lukić et al. 2015). 

 

 

Figure 3. The most used water harvesting techniques in SEE are reversed slope terraces called gradoni (adapted from Lujić 
1973): Gradoni at different slopes (A and B) and with manual prepared planting hole (C). During planting hole 

preparation, soil layers are inverted. 

Gradoni, a version of bench terracing, is a technique of soil preparation for 
afforestation used since the end of the 19th century in France (Andrejević 1959) and Italy 
(Mercurio and Schirone 2015), and it was widely practiced in Serbia and FYR Macedonia. 
This method was used in Grdelica gorge in Serbia and provided more efficient soil 
erosion control compared to afforestation using planting holes without terracing (Lukić 
2013). In addition, some different techniques, like diamond shaped negarim micro-
catchments (Critchley and Siegert 1991, Prinz 1996), characterized by small earth 
mounds, with an infiltration pit at the lowest corner, should be tested in SEE conditions.  
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FACILITATION BY NURSE PLANTS: Some plants benefit from closely associated 
neighbors (Tab. 10), a phenomenon known as facilitation (Padilla and Pugnaire 2006). 
Nurse plants have been mainly used to restore vegetation in arid and sub-arid zones in 
recent years (Ren et al. 2008). 

Table 10. Reported positive effects of nurse plants to seedlings survival and growth. 

Effect Source 

Protect seedlings from frost. Stilinović 1991; LePage and Coates 1994 

Reduce soil water evaporation, lower soil and air temperature, 
and decrease the amount of radiation reaching the plants by 

shading. 
Padilla and Pugnaire 2006; Endo et al. 2008 

Improve the availability of water through the process known as 
“hydraulic lift”. 

Padilla and Pugnaire 2006 

Improve nutrient availability by nitrogen transfer between 
legumes and non-leguminous plants. 

Franco and Nobel 1989; Padilla and Pugnaire 
2006; Rodríguez-Echeverría et al. 2016 

Promote the development of differentiated soil microbial 
communities. 

Duponnois et al. 2011; Rodríguez-Echeverría et 
al. 2016 

Promote survival and growth by mycorrhization. Bai et al. 2009; Bauman et al. 2012 

Soil stabilization. 
Endo et al. 2008; Rodríguez-Echeverría et al. 

2016 

 
In reforestation of Mediterranean mountains, Pinus sylvestris and P. nigra 

survival was remarkably higher and growth unaffected when planted under individuals 
of the shrub Salvia lavandulifolia Vahl (Castro et al. 2002). Three years after planting, 
association between Cupressus atlantica Gaussen and Lavandula stoechas L. lead to a 
higher growth of C. atlantica and better soil microbial characteristics compared to the 
control treatment (Duponnois et al. 2011). Gómez-Aparicio et al. (2004) conducted a 
meta-analysis with seedling survival and growth data for the first year after planting at 
experimental reforestations with more than 18,000 seedlings of 11 woody species 
planted under 16 different nurse shrubs throughout a broad geographical area in 
southeast Spain. They concluded that facilitative effect was consistent in all 
environmental situations explored; but with differences in the magnitude of the 
interaction, depending on the seedling species planted as well as the nurse shrub species 
involved. Additionally, they found that nurse shrubs had a stronger facilitative effect on 
seedling survival and growth at low altitudes and sunny, drier slopes than at high 
altitudes or shady, wetter slopes. At dry sites with full sunlight, creating shadow by nurse 
plants can promote survival but reduce photosynthetic rate. Although shade enhances 
the probability of Pinus pinea survival, carbon assimilation reaches maximum values on 
more open sites (Calama et al. 2015).  

On sites where no suitable nurse plants are already present, the simultaneous 
planting of targeted tree species and nurse-planting seedlings is recommended (Blanco-
García et al. 2011). However, the selection of nurse plant species is not a simple task. 
The use of nurse plants is a dynamic system and what could start out as a beneficial 
strategy may turn detrimental with nurse plant strategy could become a vegetation 
management issue with unforeseen consequences and costs (Grossnickle, personal 
communication).  Thus, nurse plant species should be featured by limited resources 
demands and growth. This indicates the need for research of nurse plants effect on tree 
species used in the range of environmental conditions specific for SEE. 
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4.3 Planting 

All efforts invested in the selection and production of planting material and in 
site preparation can be rewarded or depreciated during planting. The full effect of the 
planting method may not be visible until the first stress event, even 10 or more years 
after planting (Stilinović 1991). Improper planting is one of the main reasons of 
reforestation failures in Serbia (Ivetić 2015; Fig. 4). A number of planting methods can 
be used (Stilinović 1991; Kloetzel 2004; Landis et al. 2010; Ivetić 2013), depending on 
tool and seedling stocktype. Assuming that appropriate planting is applied (e.g. putting 
seedling into the hole in an appropriate manner), several techniques are available to 
promote seedling survival and growth. 

 

Figure 4. Improper planting was observed with more than 20% of the total number of dead seedlings at 10 sites (Ivetić 
2015). These seedlings are found dead after one growing season because of shallow planting and poor root contact with 

soil. 

INCREASE OF PLANTING DEPTH: Dimensions of the planting hole and seedling 
positioning depend on site conditions, species, and stocktype. Planting depth (i.e., 
distance between the root-collar and the groundline as defined by South 2005) can 
effect seedling survival. Heat, often confused with drought, and shallow planting are 
probably the most over looked causes of death of planted bareroot seedlings (Stroempl 
1990) and shallow planting, regardless of taproot form, can promote seedling mortality 
(South 2005). Without rain, deeply planted Pinus echinata Mill. seedlings (11 cm below 
ground line) survived significantly better than seedlings planted with the root-collar 
slightly below the groundline (South et al. 2012). Deep-planting techniques promote 
seedling establishment by immediate exploitation of capillary fringe moisture (Dresen 
and Fenchel 2010). Effect of planting depth is species specific and the native habitat of 
a species should be considered (Bryan et al. 2010). Additional research on effect of 
planting hole dimensions and planting depth are needed for species and site conditions 
specific to SEE. 
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INCREASE OF NUTRIENT AVAILABILITY: Field fertilization can improve 
performance of planted seedlings. An organic amendment significantly improved 
seedlings growth (Grossnickle and Reid 1983; Roldan et al. 1996; Barberá et al. 2005) 
with no apparent negative influence on seedling mycorrhization (Querejeta et al. 1998). 
Effect of organic amendment can be species specific. Grossnickle and Reid (1982) found 
that root system of 5-year-old Pinus flexilis James was not affected by the sewage sludge 
and wood-chips fertilization, but root system development of Pinus concorta and Picea 
engelmannii Parry. ex Engelm. was dramatically reduced. This reduction, however, was 
result of water stress rather than nutrient stress; because this ersatz soil created low soil 
bulk density conditions and reduced soil water movement to newly planted seedlings 
root systems (Grossnickle and Reid 1984). There is a concern that fertilization will 
stimulate competitive vegetation. Because of that, fertilization should not be broadcast 
over the site, but rather only applied close to the seedling root system. Field fertilization 
using controlled-release fertilizer has emerged as an effective means of promoting early 
growth of planted seedlings (Jacobs 2014). In order to use controlled-release fertilizers 
successfully, their formulation, release behavior, and environmental interactions must 
be understood (Rose et al. 2004). At dry sites, fertilization can result with root 
dehydration and limited water uptake, because of increased fertilizer salts in the soil 
solution (Jacobs et al. 2004b). Decision about field fertilization in any reforestation 
project should consider many variables, including soil conditions, competitive 
vegetation, site drought level, and seedling species demands. These variables, as well as 
ephemeral nature of field site fertilization (Grossnickle 2000), further emphasize that 
the decision making process must by project specific. 

INOCULATION WITH MYCORRHIZAL FUNGI AND PLANT GROWTH PROMOTING 
RHIZOBACTERIA (PGPR): Inoculation of seedlings with mycorrhizal fungi and PGPR can 
improve seedling survival and growth on sites with shallow or no soil profile. A 
combination of soil terracing, urban solid refuse amendment, and mycorrhization could 
be successfully applied in afforestation programs in semiarid and degraded sites (Roldan 
et al. 1996). Seedling mycorrhization at planting correlated positively with growth 
(Duñabeitia 2004) and survival (Óskarsson 2010). A simple and cost efficient technique 
for promoting mycorrhization is addition of forest soil to the planting hole. Although 
nursery inoculation with mycorrhizal fungi resulted in a faster growth rate, addition of 
forest soil to the planting holes to promote mycorrhization improved field growth of 
Pinus halepensis (Querejeta et al. 1998). Seedling performance can be significantly 
enhanced through PGPR inoculation of root systems (Chanway 1997), especially when 
moving from favorable to harsh sites (Chanway and Holl 1993; Chanway and Holl 1994). 
Additionally, seedling inoculation with PGPR is beneficial on contaminated soils (Babu et 
al. 2014; Karličić et al. 2016). Inoculation of Robinia pseudoacacia L. and Pinus sylvestris 
seedlings with PGPR increased seedling growth in coal mine overburden (Karličić et al. 
2015). PGPR have a short-term, site specific effectiveness for reforestation of conifer 
seedlings, which necessitate matching PGPR strains to outplanting sites for effective 
growth promotion (Chanway et al. 2000). Although use of mycorrhizal fungi and PGPR 
has the potential to benefit seedling during establishment phase, the seedling-
microorganism relationship does not always yield improved field performance 
(Grossnickle 2000). 

AMENDMENT OF SUPERABSORBENT POLYMERS: Evidence suggests that 
application of superabsorbent polymers (hydrogels) during planting promotes seedling 
field performance. Polymer increased survival and leaf water potential of Pinus pinea 
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seedlings in field conditions (Pery et al. 1995) and hydrogel combined with mycorrhizal 
inoculation promoted Picea abies (L.) Karst. resistance to drought stress (Višnjić et al. 
2004). An innovative soil conditioner, comprising 23 ingredients including a new 
complex of hydro absorbent polymers, significantly enhanced tree growth in conditions 
of poor precipitation and/or thick textured soil with poor water holding capacity (Coello-
Gomez et al. 2015). Šijačić-Nikolić et al. (2011) found that application of 5 g of polymer 
per planting hole increased two-year survival and growth of Pinus nigra and P. sylvestris 
seedlings. However, an excessive application of hydrogel increased mortality of Pinus 
sylvestris seedlings (Sarvaš et al 2007). Because contradictory results are reported, it is 
recommended that growers or planters conduct small trials to determine whether there 
are benefits to using hydrogels under their specific conditions (Landis and Haase 2012).  

PLANTING LAYOUT AND DENSITY: Irregular planting pattern can complicate 
silviculture operations, but it can promote seedling survival and provide a close 
surrogate to successful natural regeneration that provides a more natural appearance 
of a landscape. Choosing the best planting spot is critical and more important than exact 
spacing (Landis et al. 2010), because initial seedling performance is related to microsite 
performance. On sites with harsh conditions, planting in groups on deeper soil is 
recommended, regardless of adopted regular planting pattern (Stilinović 1991). The risk 
of seedling mortality is not constant, but varies with tree species, planting density, tree 
age, and site conditions (Gadow and Kotze 2014). In most SEE reforestation programs, 
the prescribed planting density is 2,500 seedlings per hectare regardless of species 
characteristics and site conditions. The decision on planting layout and density should, 
however, be project specific with aim to promote survival and reforestation success. 

4.4 Post-planting 

The aim of post-planting silviculture during the establishment phase of 
plantation development is to promote success by improving microsite conditions and 
protecting planted seedlings. Post-planting treatments are essential for the success of 
seedlings establishing in droughty conditions (Klossas et al. 2012), but also on higher 
quality sites with risk of competitive vegetation and browsing. 

VEGETATION (WEEDS) CONTROL: At the planting site, weeds are those 
herbaceous and woody species that compete with planted seedlings for energy, water, 
and nutrients. However, not all existing vegetation at planting sites should be 
considered weeds (see Facilitation by Nurse Plants above), and not all of them should 
be controlled. At planting site, herbaceous vegetation control has more effect than 
woody vegetation control (Rose et al. 1999). Effect of existing vegetation on planting 
site can be twofold. Betula papyrifera Marshall reduces growth of shade-intolerant 
conifers but facilitates growth of shade-tolerant conifers (Simard and Vyse 2006).  

Due to high costs and environmental issues (especially with herbicide use), 
decisions about vegetation control application should be based on a cost-benefit 
analysis. For example, growth and yield simulations using treatment-specific site index 
curves suggested that site preparation or post-planting vegetation control could reduce 
rotation length of Picea glauca by 12–16 years, but untreated areas were predicted to 
produce an equivalent volume if left to grow to mean annual increment culmination age 
(Boateng et al. 2009). Knowledge of the maximum (a level of vegetation cover where 
additional control will not increase tree performance) and minimum (a level of 
vegetation cover that must be reached before additional control will increase tree 
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performance) response thresholds can be used to improve herbicide prescriptions 
(Wagner et al. 1989). A minimum response threshold level of 20% cover has been 
suggested (Wagner 2005). The response thresholds are species and site specific. Pinus 
contorta Dougl. var. latifolia Engelm. height and diameter growth and Picea 
glauca × Picea sitchensis diameter growth increased dramatically when cover of Rubus 
parviflorus Nutt. was below 5%, suggesting a response threshold (LePage and Coates 
1994). Mortality of Betula pendula Roth and Pinus sylvestris seedlings increased 
significantly once the cover of competing vegetation reached 60% (Hytönen and Jylhä 
2005; Jylhä and Hytönen 2006). Such thresholds should be considered during the 
decision making process on application of any method of vegetation control.  

Another issue to consider is how many years after planting vegetation control is 
beneficial to seedlings performance. Intensive vegetation control in first couple of years 
after planting is critical for seedling field performance. The critical period in the 
establishing phase differs with species: 1-2 years after planting for shade-intolerant 
Pinus banksiana Lamb. and Pinus resinosa Sol. Ex Aiton, 1-4 years for more shade-
tolerant Picea mariana (Mill.) B.S.P. and Pinus strobus L. (Wagner et al. 1999). Rose and 
Ketchum (2003) found no observable effect of vegetation control in third year after 
planting on Pseudotsuga menziesii growth. Additional time aspect to consider is 
duration of vegetation control effect. Positive effect of weed control with herbicides last 
up to 11 (Hytönen and Jylhä 2005) and 30 (Wagner 2005) years after planting.  

Vegetation control generally has a positive effect on seedling performance but 
efficiency depends on method and size of the control area. Competitive vegetation can 
be controlled physically by mulching, mechanically by cultivation, and chemically by 
herbicides (Tab. 11). 

Table 11. Reported positive effects of vegetation control to seedlings survival and growth. 

Type Method 
Positive effect on 

survival (S) and growth (G) 
Source 

Physical Mulching S 
Navaro Cerrillo et al. 2005; Hytönen and Jylhä 

2005; Ceacero et al. 2014 

Mechanical (M) 
Cultivation S Navaro Cerrillo et al. 2005; Ceacero et al. 2014 

Removal G Klossas et al. 2012 

Chemical     (C) Herbicide 

S Navaro Cerrillo et al. 2005; Ceacero et al. 2014 

G 
Balneaves et al. 1996; Rosner and Rose 2006; 

Klossas et al. 2012 

S+G 
Hytönen and Jylhä 2005; Hytönen and Jylhä 

2008 

M + C  G Sutton 1995 

 
Chemical vegetation control significantly improved seedling growth compared 

to the manual cutting (LePage and Coates 1994), tillage (Groninger et al. 2004), mulch 
and cover crop (Jylhä and Hytönen 2006). Combination of weed control methods can 
result in synergic effect. Rey Benayas et al. (2005) found a clear positive synergic effect 
of shading and weed mowing on seedling performance of three Quercus species (Q. 
coccifera L., Q. ilex, and Q. faginea Lam.).  

Increasing in area of vegetation control has positive effect on seedling growth. 
Mean stem volume, basal diameter, and height of seedlings increased significantly with 
increasing area of vegetation control, and the magnitude of difference between 
treatments increased with time (Rose and Ketchum 2002).  



REFORESTA (2016) 1:178-220  Ivetić and Devetaković 

Reforesta Scientific Society   201 
 

The vegetation control efficiency depends on seedling stocktype as well: 
promoting survival of small and growth of large seedlings. Although the highest stand 
volumes of 15-years old Picea abies were obtained with the combination of large 
bareroot seedlings (4-year-old) and effective vegetation control, 2-year-old container 
seedlings because of their smaller size benefited more from vegetation control in terms 
of survival (Hytönen and Jylhä 2008). The volume return from increased weed control is 
maximized by planting the largest possible seedlings (Rosner and Rose 2006). On sites 
released from competitive vegetation larger seedlings grow quickly and occupy site 
resources during establishment due to greater level of incoming radiation and their 
greater photosynthetic capability (Grossnickle 2005a).  

Chemical control of herbaceous competition in the first couple of years after 
planting promotes small seedlings survival and large seedlings growth. Decision on type, 
method, area, and number of applications should be made on species specific response 
thresholds and site specific conditions (e.g. vegetation cover, environmental 
restrictions, and erosion control). 

MULCHING: Mulching is the spreading of material around planted seedlings to 
cover the soil with a goal of mitigating extreme temperatures, reducing evaporation and 
moisture loss, controlling weeds, and perhaps, enhancing  soil structure and fertility. 
Some mulches are effective in some environments, some are not (McDonald and 
Helgerson 1990). Pseudotsuga menziesii seedlings grew best with treatments that 
promoted the most efficient use of available microsite water, either by reducing soil 
surface evaporation or vegetation competition (Flint and Childs 1987). The effect of 
mulching depends on material, size, cost, and longevity. Mulching positive effect on 
seedling growth increase with mulch size (McDonald et al. 1994; Harper et al. 1998). 
Although mulch mats controlled vegetation around trees as well as conventional 
herbicides, they were 7X more expensive (McCarthy et al. 2007).  

Table 12. Effect of different mulch materials on seedling field performance. 

Material 
Positive effect on survival (S) and 

growth (G). (NE) = no effect. 
Source 

Organic material + sand layer G Yohannes 1999 

Wood chips G Siipilehto 2001 

Fibres (natural, synthetic, and 
mixture) 

G Haywood 1999 

Wastepaper fibre slurry NE Siipilehto and Lyly 1995 

Paper sheets S+G Bradley 1962 

Fibre board S Hytönen and Jylhä 2005 

Porous, and perforated plastic G 
Walker and Mclaughlin 

1989; Harper et al. 1998 

Polyetilene sheets G 
Stepanek et al. 2002; Chaar 

et al. 2008 

Plastic strips G Cogliastro et al. 1997 

 
A variety of materials are used for mulching and they have a range of biological 

effects (Tab. 12). On one hand, the improvement of seedling survival and growth by 
mulching is stronger on high quality sites where seedlings can better utilized the rich 
soils, higher soil moisture contents, and reduced weed competition (Coello-Gomez et al. 
2015). On the other hand, mulching can promote browsing. Quercus rubra L. seedlings 
grown with fabric mats had a greater frequency of deer browsing and a greater chance 
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of dying than seedlings grown without mats, indicating that fabric mats should not be 
used in restoration projects with large deer populations (Stange and Shea 1998). 

In addition to biological effect and price, the selection of appropriate mulching 
for reforestation programs in SEE should consider possible socio-economic effects. 
Some mulches, like those made of cardboard packaging (Fig. 5), can be easily produced 
in rural communities or by children in local schools helping their economics and raising 
awareness on environmental issues. 

 

Figure 5. Mulch made of cardboard packaging. 

USE OF TREE SHELTERS: Tree shelters provide physical protection and modify 
the environment conditions of planted seedlings. Tree shelters have proven to be a 
highly effective complement to vegetation control treatments (Navaro Cerrillo et al. 
2005; Ceacero et al. 2014) (Fig. 6) and many studies report the positive effects of tree 
shelters on seedling performance: survival (Stange and Shea 1998; Oliet et al. 2005) and 
growth (Stange and Shea 1998; Chaar et al. 2008; McCreary and Tecklin 2001). Until the 
seedling grows above the shelter, height growth is favored compared to stem diameter 
(Oliet et al. 2005). Once this rapid, short term growth (Barberá et al. 2005) brings the 
terminal above the top of the shelter average height growth diminishes and diameter 
growth increases (McCreary and Tecklin 2001). 

The effect of tree shelters depends on design, color, and size. Solid-wall shelters 
outperform screen cages (McCreary and Tecklin 1997), mesh or fabric sleeves (Ward et 
al. 2000), wire, and nylon mesh (Klossas et al. 2012). Shelter color can have a 
pronounced effect. For shade-tolerant Picea engelmannii planted at high elevation, the 
lighter-colored, solid-wall shelters yielded higher two-year survival (95 to 99%) than 
control seedlings (58%; shading seedlings using logging slash, stumps, and vegetation 
within the site) and the darkest, solid-wall shelter (5%); height and diameter growth 
followed the same pattern (Jacobs and Steinbeck 2001). Bellot et al. (2002) found that a 
30-cm tall, brown plastic, solid-wall protector was most beneficial for total biomass 
growth of Quercus coccifera seedlings. 

Various effects of tree shelters on seedlings physical environment are reported. 
Shelters increased maximum temperature by up to 10°C and decreased light intensity 
by 50% or more (Ward et al. 2000). In contrast, tree shelters color and venting did not 
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influence air temperatures and only affected vapor pressure deficit late in the growing 
season (Devine and Harrington 2008). However, Laliberté et al. (2008) found that 
facilitation of hardwood growth was not caused by an improvement of tree water 
relations, but rather to an optimization of light levels inside the shelter: “low enough to 
lead to a photosynthetic system less costly to maintain due to a greater specific leaf area 
but high enough to have no adverse effects on photosynthetic rates”. Environmental 
factors such as light availability need to be considered to optimize the effect of tree 
shelters. Tree shelters increased growth when shading by surrounding herbaceous 
vegetation was low, but reduced growth when surrounding vegetation blocked a 
substantial quantity of light (Laliberté et al. 2008). Shelters can increase water supply 
through dew harvesting. Both single and double wall design shelters had higher dew 
point temperature and lower minimum temperatures resulting in increased dew 
formation, but a significant increase in soil moisture was registered only with a single-
wall shelter (del Campo et al. 2006). Even so, “seedling height growth in the single walled 
shelter was smaller indicating that only when soil moisture becomes over 6% does affect 
growth” of Pinus halepensis seedlings (del Campo et al. 2006).  

Solid-wall, light-colored tree shelters can optimize light levels inside the shelter, 
initiate dew harvesting, and provide physical protection to seedlings during critical 
establishing phase of development. Given the wide variety of tree shelters on the 
market, shelters of different characteristics should be tested for specific combinations 
of species and site conditions. 

 

Figure 6. Solid wall tree shelters on weed free site planted with Quercus robur  L. seedlings (left) and at site under strong 
vegetation competition planted with Fraxinus excelsior L. seedlings (right). 

BROWSING CONTROL: Success or failure of reforestation often depends on 
control of animal damage. Compared to favorable sites where seedlings can resume 
normal growth more readily, the negative impact of animal damage persists longer on 
harsher sites because of slower growth. A variety of techniques have been used for 
browsing control, which generally can be divided into physical protection or chemical 
repellents. Although planted trees can be protected by fencing the planting site, 
individual seedling protection is prevailing in reforestation programs in SEE.  Many tree 
shelters (plastic tubes) and guards (meshes, wires, etc.) are available on the market for 
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individual seedling protection. Protectors were consistently effective in preventing 
browse damage without reduced survival or height growth (Schaap and DeYoe 1985). 
The use of plastic tree shelters prevented deer browsing and reduced the mortality rate 
of Quercus rubra seedlings from 35% to 3% (Stange and Shea 1998). “No Quercus 
pagoda Raf. seedlings in the tree shelters were browsed” (Dubois et al. 2000).  

An additional, positive effect of tree shelters is promoting height growth (see 
Use of Tree Shelters above). Tree shelters can greatly reduce the time required by 
seedlings to grow above the browse line (McCreary and Tecklin 1997), after which the 
danger of animal damage is significantly decreased.  

An alternative to physical protection is the use of chemical repellents that 
generally rely on fear, conditioned avoidance, pain, or taste (Nolte and Wagner 2000, 
Trent et al. 2001) (Tab. 13). New products are continually developed with variable 
efficiency depending on active ingredient, method of application, durability, and animal 
species. In general, repellents using fear as a mode of action were more effective than 
products using other modes of action (pain, taste, and aversive conditioning) and topical 
repellents were more effective than area repellents (Wagner and Nolte 2001). 

Table 13. Delivery systems of chemical repellents (Adapted from Nolte and Wagner 2000). 

Effect Active ingredients 

Fear of predator 

Compounds that indicate predator 
activity emitting sulfurous odors 

(such as predator urine, meat 
proteins, or garlic). 

Conditional avoidance 
Compounds that cause nausea or 

gastrointestinal distress. 

Pain 
Compounds that cause pain or 
irritation, like: capsaicin, allyl 

isothiocyanate, and ammonia. 

Taste Bittering agents. 

 
Although commercial repellents are effective for some species, they may not be 

cost-effective for most situations due to high cost (Wagner and Nolte 2000). Low cost 
kitchen recipes can, however, be used as alternative (Fig. 7). These repellents are less 
effective and durable, but easy and inexpensive to produce. 

 
Figure 7. A homemade repellent from ingredients found in a local market. The basic ingredients are grained paprika 
containing capsaicin, and eggs. Milk, garlic, and other amendments can also be used. Hand sprayers with range of 

capacity can be used for application. 



REFORESTA (2016) 1:178-220  Ivetić and Devetaković 

Reforesta Scientific Society   205 
 

5 Conclusions  

In the SEE, every reforestation project faces different challenges, due to 
uncertainty of climate change predictions and wide range of environment conditions. 
The biggest challenge to reforestation success will be frequency, duration, and severity 
of extreme weather events. Most of the tree species currently in SEE cannot keep pace 
with changes in environmental conditions on which forest populations are currently 
adapted. We reviewed a number of strategies and techniques that may promote 
reforestation success in changing environment. The toolbox is well-equipped and offers 
plenty of solutions.  

Although we distinguish site specific from species specific projects, both rely on 
correctly matching site and species, and require different approaches to make that 
decision. Matching provenances to a planting site facing climate change requires 
additional research on genetic variation and local adaptation of targeted species, 
especially for those with small populations and limited or disjunctive ranges. Assisted 
migration is an appropriate strategy for facing climate change, considering the 
difference in pace of climate change and tree species natural migration rates, but large 
scale assisted migration is unlikely due to limitations in northwards and upwards 
distances available in SEE. This strategy should be implemented on a small scale. Seed 
transfer guidelines should allow and encourage movement of forest reproductive 
material across administrative and state borders. 

A number of nursery cultural practices are available for SEE nurseries that 
promote target seedling attributes and field performance, depending on species and 
stocktypes, e.g. between hardwoods and conifers and between bareroot and container 
seedlings. Proper site preparation and planting techniques promotes reforestation 
success. Seedling benefits from microsite improvement by water harvesting, and 
facilitation by nurse plants. Inoculation of seedlings with mycorrhizal fungi and plant 
growth promoting rhizobacteria (PGPR), and application of superabsorbent polymers 
(hydrogels) during planting offer a variety of tools for promoting seedling’s field 
performance; but require site/species specific testing. 

Vegetation (weed) control during first couple of years after planting is the post-
planting treatment the most beneficial to seedling performance, but not all existing 
vegetation at the planting site should be considered competition. Complement 
techniques are mulching, tree sheltering and browsing control; with many available 
products available but still plenty of room for innovations and home-made solutions. 

The need is constant for finding new solutions and testing existing strategies and 
techniques in conditions of SEE because no single solution or tool is best for all 
situations. Selection of appropriate strategies and techniques to achieve reforestation 
goals should combine knowledge on target species biological characteristics with focal 
site environment conditions and with climate change predictions. 
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