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Abstract  

Drought and salinity act simultaneously in tolerance and acclimatization under saline 
conditions. Therefore, plants subjected to these types of stress should have developed 
specific structural adaptations at the early stages of development. The solution to 
these environmental problems is to look for species that are relatively water-efficient 
and resistant to recurrent episodes of various abiotic stresses such as salt stress. In 
this study, the salinity tolerance index, ionic homeostasis and osmoprotection were 
evaluated in A. karroo and A. saligna plants of 90 days old and cultured at various 
concentrations of NaCl for 21 days. Results showed that salt caused remarkable 
changes in some growth-related parameters (dry biomass) represented by the salinity 
tolerance index (STI). Na+, Ca2+, and RatioNa+/K+ content in the leaves increased with 
salinity levels, while K+ contents were significantly reduced compared to the control in 
both acacia species. Levels of proline, total free amino acids and reducing sugars have 
been accumulated considerably in the leaves. A. karroo was more salt-tolerant than A. 
saligna. Our results showed that the adaptability of a species to salinity is closely 
related to ion selectivity and biomass production. The seedlings also accumulated 
significantly a set of important osmolytes in leaves under salt stress, showing a marked 
increase in secondary metabolite accumulation. This adaptation proved very specific 
to each species for better survival in saline environments. 
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1 Introduction 

Vegetation is the key to restoration of degraded landscapes and its 
management will be the single most important consideration in any restoration 
project (Bâ et al. 2010). Typical desertification processes include soil erosion, 
deforestation and overgrazing, or salinization and other forms of environmental 
degradation (Gibbs and Salmon 2015). The salinity effect on plants can be described in 
two main stages: Shoot independent reaction occurs first in minutes to days and is 
thought to be related to Na+ detection and signaling (Roy et al. 2014). In this first 
stage, the effects of salinity can be significant on water relations, causing stomatal 
closure and inhibition of leaf expansion (Miller et al. 2010). The second phase, the salt-
dependent response to salinity, develops over a longer period (days to weeks) and 
leads to the accumulation of toxic ions in the stem and particularly in old leaves, 
leading to premature senescence leaves (Munns and Tester 2008). Salinity can affect 
the growth and yield of most plants, inducing a reduction in cell division in roots and 
leaves, auxesis and cell differentiation, with their complex interactions followed by 
significant tissue damage, resulting in plant death from prolonged exposure to salinity 
(Negrão et al. 2017; Kheloufi et al. 2018b). The generic result of the effect of this 
abiotic factor is also a loss of productivity (Zika and Erb 2009). 

One of the most urgent problems to be solved today is the reconstruction of 
degraded ecosystems because of soil salinization. In general, woody vegetation plays a 
fundamental role in the structure and functioning of arid and semi-arid ecosystems 
(Gautier et al. 2015). It is in this context that the introduction of fast-growing exotic 
species has been commonly used as a solution to facilitate the ecological restoration 
of degraded landscapes (Schneider et al. 2014). Like most forest trees, acacias are 
frequently used in reforestation programs and agro-sylvo-pastoral adjustment systems 
for arid and semi-arid regions (Mansouri 2011). Autochthonous acacia species are 
often adapted to drought and thermal constraints (Kheloufi et al. 2018a), contribute 
to the restoration of poor soils and allow fertility gains by fixing variable amounts of 
atmospheric nitrogen through the association of their root systems with 
microorganisms (Rhizobium and Mycorrhizae) (Boukhatem et al. 2012). They are 
widely known and used for livestock as a source of forage (Mokoboki et al. 2011; 
Kheloufi and Mansouri 2017). 

A. saligna is the only Acacia tree with phyllodes present in Algeria. This species 
colonizes all the northern Algeria and can tolerates a wide variety of soil (even alkaline 
soils) and behaves normally close to very saline soils (Sebkha, chott) and coasts 
(Kheloufi et al. 2018a). Indeed, A. saligna can tolerate salt spray, hot coastal sun, 
extreme winds and sandy soil (Mansouri 2011). It is used for the creation of good 
windbreak, and it is one of the fast-growing species. The best example is the project of 
sand quarry reforestation in association with selected rhizobia by Mansouri (2011) in 
the region of Aïn Temouchent (Northwest of Algeria). The zone is located at 2 meters 
of altitude and 400 meters from the coast. The 1840 planted trees of A. saligna show a 
great development and participate in biodiversity conservation and soil erosion 
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prevention. This species is used as a pioneer species, promoting the improvement of 
soil fertility in short periods of time, and promoting a better development of other, 
more productive species. On the other hand, A. karroo is also a fast-growing tree 
which takes place at the second position after A. saligna. Leaves are composed by 
many leaflets. Branches are armed with very long sharp thorns. This tree is a reliable 
source of forage due to foliage, flowers and pods. It is a considerable source of shade 
in the dry regions and a site of nesting for several species of birds. The wood is hard, 
durable and its gum is edible (De Vynck et al. 2016). This species is listed in most of the 
Algerian territory and its behavior varies from an ecotype to another (Kheloufi et al. 
2018a). In Algeria, it has been reported that A. karroo could germinate under 400 mM 
NaCl with 66% of final germination (Kheloufi et al. 2017a). However, the seeds of A. 
saligna could only germinate at 150 mM with only 18% of final germination (Kheloufi 
et al. 2016). In this study, we describe techniques that measure the impact of salinity 
in these two acacia species (A. karroo and A. saligna) on physio-biochemical traits 
associated with growth, ionic homeostasis and some biochemical components. 

2 Material and methods 

2.1 Growth conditions and experimental  design  

The seeds of A. karroo Hayne were collected from Aïn El Baïda salt farm area 
(Oran, Algeria) (latitude: 35°39'34.96"N; longitude: 0°40'4.68"W; elevation: 136 m) 
and those of A. saligna from the region of Terga (Aïn Temouchent, Algeria) (latitude: 
35°26'32.26"N; longitude: 1°13'42.80"W; elevation: 2 m). Pods were collected from 10 
trees and the seeds were then mixed. The thousand-seed-weight of A. karroo and A. 
saligna were 39 g and 15 g, respectively. Sieving and flotation were used to sort out 
seeds. The clean seeds were then spread on filter paper to dry. Once dried, the seeds 
undergo a chemical treatment which consisted of immersion in 96% sulphuric acid for 
30 minutes for A. karroo (Kheloufi 2017) and 90 minutes for A. saligna (Kheloufi et al. 
2017b), followed by washing in distilled water. A. karroo and A. saligna seeds need 
this pre-treatment to break the seed coat dormancy. 

Seeds were germinated in plastic pot (Top diameter: 10 cm; Bottom diameter: 
7 cm; Height: 14 cm) (Figure 1) containing 1 kg of mixed substrate (two volumes of 
sand mixed with one volume of compost) (EC=49 mS.m-1; pH=6.2; N=89 g.m-3;  
P2O5=42 g.m-3; K2O=27 g.m-3) and arranged according to the method of complete 
randomized blocks with four replicates under greenhouse conditions. Sand was sieved 
at 2 mm to eliminate wastes and coarser material then washed repeatedly with tap 
water to eliminate all carbonates and chlorides. The experiment was conducted in the 
green house of Ecology and Environment Department, University of Batna 2, Algeria. 

Three months (90 days) old healthy seedlings of uniform size were selected as 
initial material and further grown in KNOP’s nutrient medium. Plants were subjected 
to salt treatment by supplementing the nutrient medium with varied sodium chloride 
(NaCl) concentrations (200, 400 and 600 mM) (Table 1). The control plants were grown 
in the nutrient medium devoid of NaCl. The nutrient solutions were replaced with 
freshly prepared solutions at every 7 days intervals. 

After 21 days of salt treatment, stem and root samples were harvested from 
control and NaCl-treated plants for estimation of various parameters. It should be 
noted that for each measurement/treatment or assay, a number of 4 replications 
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were used. In addition, and to ensure the study of the effect salinity on all parameters 
with the same conditions of growth and development, a considerable number of 
plants were used (30 plants × 4 treatments × 2 species). 

 

Figure 1. Experimental design and different stages of plant development of two acacia species:                                             
(A) A. karroo and (B) A. saligna. 

Table 2. Preparation of saline solution and corresponding water potential. 

NaCl (mM) NaCl (g.L-1) 
Ψos Level (MPa)  

(Braccini et al. 1996) 

0 0 0 
200 11,68 -0,83 
400 23,37 -1,67 
600 35,06 -2,50 

2.2 Studied parameters  

The estimation of biochemical parameters took place at the Biotechnology 
Research Center (CRBt) (Constantine, Algeria). 

 
Salinity tolerance index  

 

STI =
TDW at Sx

TDW at SI
× 100 

TDW : Total dry weight of the plant (Oven at 80 °C for 48 hours) 
SI: Control treatment 
Sx:  Treatment at a salt concentration ‘x’ 
 

Estimating ion contents in leaves 
 

Twenty-one days of NaCl treatments, four plants were used from each 
treatment for numerous measurements. Leaves dry matter (LDM) was measured at 60 
°C for 48 h. The oven-dried leaves samples were ground into powder and kept in a 
desiccator for determining the contents of Na+, K+ and Ca2+. After desiccation, the 
powdered samples were used to determine the ion contents by Inductively coupled 
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plasma-mass spectrometry (Kleve, Germany) following the method of John et al. 
(2003).  

 
Contents of proline, total free amino acids and soluble proteins 

 
The levels of proline (Pr), total free amino acids (TFAA) and soluble proteins 

(SPt) in leaves were determined following the methods described by Ringel et al. 
(2003), Yemm et al. (1955) and Bradford (1976), respectively. 

 
Contents of reducing sugars and starch 

 
The contents of reducing sugars (RS) and starch (St) in leaves samples were 

estimated according to the method of Green and Schwarz (1989) and Hansen and 
Møller (1975), respectively. 

All experiments were conducted with four replicates (n = 4) and the mean (± 
SD), one-way and two-way ANOVA were calculated using SAS Version 9.0 (Statistical 
Analysis System) (2002) software. The mean separations were carried out using 
Duncan’s multiple range tests and significance was determined at p ≤ 0.05. The 
graphics were made with Excel 2016. 

3 Result and discussion 

The effect of NaCl, the species and their correlation (TRT × Sp) was highly 
significant on all the parameters studied in this work (p < 0.0001) (Table 2). 

3.1 Salinity tolerance index  

The STI is a reliable parameter for the determination of salt tolerance 
(Krishnamurthy et al. 2016). According to (Table 2), it was not affected by salt stress at 
low and high levels (p<0.0001) except that there is a highly significant difference 
between the two species studied (p<0.0001). Indeed, in A. karroo, the increase in 
salinity had no effect on total dry biomass (Figure 2). In A. saligna, the STI recorded a 
50% reduction at 200 and 400 mM NaCl, and this reduction reached 70% at 600 mM 
NaCl compared to control (Figure 2). Dry biomass is used to estimate the salinity 
tolerance index as suggested by many authors (Feng et al. 2018) in order to evaluate 
the threshold of salinity tolerance over a given period. Our results indicate that plants 
exposed to salt stress at different concentrations had delaying effects on whole plant 
performance, including growth and development inhibition. 

Our conclusions corroborate those of Rahman et al. (2017) who worked on 
Acacia auriculiformis and concluded that the high salt tolerance index (STI) at the 
seedling stage indicates that the key mechanisms of salt tolerance in plants may be 
associated with (1) accumulation of compatible solutes such as Proline, total sugars, 
reducing sugars and total free amino acids; (2) increase the amount of K+ and Ca2+ ions 
in the leaves; (3) to increase the retention of K+ ions in photosynthetic tissues by 
preventing the absorption of Na+; (4) anatomic adjustment by increasing the 
endodermal thickness of the stems and roots; (5) effective compartmentalization of 
Na+ in vacuoles and (6) the increased exclusion of Na+. 
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Table 2. Variance analysis for the traits investigated of five acacia species in response to different durations of sulphuric 
acid pretreatment and after 18 days of sowing. 

Parameters Variables Degree of freedom F of Fisher P 

STI 

TRT 3 12,10 < 0,0001 

Sp 1 49,38 < 0,0001 

TRT×Sp 3 6,06 0,0032 

Na+ 

TRT 3 679,03 < 0,0001 

Sp 1 85,37 < 0,0001 

TRT×Sp 3 31,74 < 0,0001 

K+ 

TRT 3 1403,03 < 0,0001 

Sp 1 82,91 < 0,0001 

TRT×Sp 3 25,84 < 0,0001 

Ca2+ 

TRT 3 1535,10 < 0,0001 

Sp 1 339,77 < 0,0001 

TRT×Sp 3 1333,70 < 0,0001 

RatioNa/K 

TRT 3 83,66 < 0,0001 

Sp 1 35,13 < 0,0001 

TRT×Sp 3 21,23 < 0,0001 

Pr 

TRT 3 25042,9 < 0,0001 

Sp 1 8457,79 < 0,0001 

TRT×Sp 3 1471,76 < 0,0001 

SPt 

TRT 3 124,27 < 0,0001 

Sp 1 1568,16 < 0,0001 

TRT×Sp 3 7,30 < 0,0001 

TFAA 

TRT 3 1277,00 < 0,0001 

Sp 1 3509,24 < 0,0001 

TRT×Sp 3 75,05 < 0,0001 

St 

TRT 3 1758,21 < 0,0001 

Sp 1 6258,59 < 0,0001 

TRT×Sp 3 103,33 < 0,0001 

RS 

TRT 3 1039,46 < 0,0001 

Sp 1 897,90 < 0,0001 

TRT×Sp 3 61,09 < 0,0001 

Es (Sp), Saline treatment (TRT), Salinity tolerance index (STI), Sodium ion content (Na+), Potassium ion content (K+), 
Calcium ion content (Ca2+), Ratio Na+/K+ (RatioNa/K), Proline content (Pr), soluble protein (SPt), Total free amino acids 
(TFAA), Starch (St), Reducing sugars (RS) 

3.2 Effect of salinity on ionic homeostasis  

In this study, the contents of various mineral ions were analyzed to better 
understand the salinity effect on the mineral absorption and their accumulation in the 
leaves. In the leaves of both acacia species, the Na+ and Ca2+ content increased 
gradually with increasing salt concentration except for the 600 mM concentration 
where the Ca2+ content in A. saligna leaves decreased by 60% compared to 400 mM 
NaCl (Figure 3A, Figure 3C). 
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Figure 2. Effect of salt stress on the salinity tolerance index in two acacia species (A. karroo and A. saligna) after 21 days 
of treatment at different levels. For each species, means, in each box, with similar letters are not significantly different at 

the 5% probability level using Duncan’s test. 

Na+ and Ca2+ levels in leaf tissues in acacia plants stressed with sodium 
chloride are in continuous growth, while the K+ content has decreased very 
significantly (Figure 3B). In both species studied and for all the salt treatments used, 
the curve of the RatioNa+/K+ in the leaves was similar to that of the Na+ ion increase 
(Figure 3D, Figure 3A). Under the extreme stress level (600 mM NaCl), the RatioNa+/K+ in 
foliar tissues of A. saligna reached a maximum of 22.4 mg.g-1 LDM. This increase is 
three times higher than that recorded in A. karroo leaves (Figure 3D). Maintaining 
osmotic pressure and turgor in leaf tissues under saline conditions is mainly realized in 
halophytes using inorganic ions (Na+, Cl- and K+) in order to maintain the leaves 
osmotic pressure and turgidity in saline conditions (Shabala and Munns 2017). These 
three main ions represent 80% to 95% of the osmotic pressure of the cells (Moir-
Barnetson et al. 2016). However, glycophytes do this homeostasis by increasing the 
synthesis of new compatible solutes (Shabala and Munns 2017). 

Based on several research results, salt tolerance in plants can be associated 
with three behaviors: (i) the exclusion of Na+, (ii) the inclusion of Na+ and (iii) Na+ 
sequestration in vacuoles. In addition, the impact of salt stress on the absorption and 
transport of other minerals is also considered to be a determining factor of salt 
tolerance mechanism in plants (Farooq et al. 2015). In this study, the content of Na+ 
and Ca2+ in the leaves of A. karroo increased continuously as a function of salt 
concentration, while the K+ content was continuously reduced, leading to an increase 
in the Na+/K+ ratio (Figure 3D). In halophyte plant species, the Na+ ions increase in the 
vacuole, realizing a relation with the activities of antiport localization Na+/H+ (NHX) 
and H+-ATPase (VH+-ATPase) vacuolar on the vacuolar membrane (Zhang et al. 2012). 

In vacuoles, K+ ions play a key role in turgor. However, under salt stress, there 
is an efflux of K+ and an influx of Na+ (Dreyer and Uozumi 2011; Bose et al. 2014). Na+ 
ions also played a role in the conservation of cells turgor under salt stress (Hasegawa 
2013). These data indicate that the competitive inhibition between Na+ and K+ uptake 
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causes a change in the intracellular Na+/K+ ratio in the acacia plants studied. The 
significant increase in Ca2+ levels in the leaves of the two acacia species subjected to 
salt stress (Figure 3C, Figure 4B) also indicates that ion exclusion mechanisms reduce 
the antagonistic effects of Na+, thus accelerating the absorption of other beneficial 
nutrients such as potassium, which actively participates in the activation of enzymes, 
the stabilization of protein synthesis, the maintenance of membrane potential and 
cytosolic pH, while calcium plays a key role in K+/Na+ selectivity and signal transduction 
to salt stress (Chakraborty et al. 2018). 

 

Figure 3. Effect of salt stress on the content of (A) sodium ions, (B) potassium ions, (C) calcium ions and (D) the ratio 
Na+/K+ (RatioNa/K) in the leaves of A. karroo and A. saligna after 21 days of saline treatment at different levels. For each 

species, means, in each box, with similar letters are not significantly different at the 5% probability level using Duncan’s 
test. (LDM : leaf dry matter). 

In both acacia species, we observed an increase in leaf Ca2+ under salt stress 
conditions, which contrasted strongly with the reduction of Ca2+ in other plant species 
when plants were subjected to the same type of stress (Prasath and Gomathinayagam 
2016; Diouf et al. 2018). Choi et al. (2017) reported that Ca2+ reduces salinity, protects 
plants and confers salt tolerance in glycophytes. It has also been reported that 
exogenous Ca2+ attenuates salinity in halophytes (Nedjimi 2017). Indeed, Ca2+ plays a 
key role in stabilizing the cell wall structure, maintaining the structural and functional 
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integrity of the cell membrane, regulating transport and ion exchange, and acting as a 
messenger in saline stress signaling (Tahjib-Ul-Arif et al. 2018). 

This regulation of Na+ and K+ homeostasis also implies the ability of A. karroo 
to maintain sufficient K+ uptake to maintain a reduced cytosolic Na+/K+ ratio (Figure 
3D, Figure 4A), which is a screening criterion for Salt Tolerance (Deinlein et al. 2014). 
This corroborates with the findings of previous work of Nemati et al. (2011) and Bader 
et al. (2015) who reported an increase in the Na+/K+ ratio or a reduction in the K+/Na+ 
ratio, respectively. A similar observation (accumulation of Na+ and reduction of K+) has 
been reported in other acacia species (A. longifolia, A. ampliceps and A. auriculiformis) 
grown under saline conditions (Morais et al. 2012; Theerawitaya et al. 2015; Rahman 
et al. 2017). Chen et al. (2010) also confirmed that high salt concentrations induced 
Na+ uptake and transport and reduced K+ content in leaf tissues. 

The increase in Ca2+ accumulation despite the increase in Na+ is interpreted by 
the fact that Na+ interferes with the absorption of Ca2+ in the presence of salt 
(Amtmann et al. 2018). Ca2+ accumulation under extreme salinity conditions (600 mM 
NaCl) could help to protect the two acacia species from the toxic effects of Na+ by 
activating the SOS pathway, which protect against salinity-induced cell membrane 
damage (Almeida et al. 2017). 

 

Figure 4. Example of correlation in A. karroo leaves: (A) Sodium and potassium ion content and (B) Sodium and calcium 
content. (LDM : leaf dry matter). 

Our results therefore suggest that the highest levels of K+ and Ca2+ in the 
leaves support the optimal functioning of metabolic processes and salt tolerance in A. 
karroo and A. saligna. In addition, intracellular K+ homeostasis is a prerequisite for the 
optimal functioning of the plant's metabolic mechanism and its overall performance 
(Amtmann et al. 2018). This result may indicate the important role played by divalent 
cations such as Ca2+ as blockers of potassium efflux channels, allowing efficient 
retention of Ca2+ in photosynthetically active leaf tissues (Almeida et al. 2017). 

3.3 Effect of salinity on proline, soluble proteins, total free amino  acids, starch 
and reducing sugars in leaves  

According to Figure 5A, the leaves proline content in A. karroo increased very 
remarkably by 320, 645 and 1454% after exposure to 200, 400 and 600 mM NaCl, 
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respectively, compared to the control. The same increase was observed in A. saligna 
except that the values are lower because the proline content was low in the control 
plants (Figure 5A). 

A progressive increase in the total free amino acid content was observed 
when the levels of exposure to salinity increased and this in both studied species 
(Figure 5C). This increase is much more expressed under 600 mM NaCl. Indeed, in the 
leaves of the two species studied, the content of free amino acids exceeds 85% of the 
control (Figure 5C). At the same time and according to the same nature of 
biomolecules, the total protein content in the leaves underwent a regressive evolution 
in both species following the increase of the NaCl concentration but with much more 
pronounced values in A. karroo (Figure 5B).  In fact, the total protein content 
decreases from approximately 30% at 600mM NaCl in the leaves of both species 
(Figure 5B). 

There is also a positive relationship between NaCl concentrations and 
reducing sugar contents, and maximum levels are observed at the highest salinity level 
(600 mM) in the leaves of the both species after 21 days of exposure to salt stress. 
Under this concentration, the reducing sugar content exceeds the control plants of 
300% and 200% respectively in A. karroo and A. saligna (Figure 5E). On the other hand, 
the evolution of the starch content is inversely proportional to the increase of the 
salinity levels. Indeed, Figure 5D clearly shows that the starch content is reduced at 
50% in both species under 600 mM NaCl. It should be noted that the values recorded 
in all these secondary metabolites are high in the leaves of A. karroo and this in both 
stressed or unstressed plants (Figure 5). 

In a highly saline environment, the main physiological response of plants is to 
perform osmotic adjustment through two processes: the accumulation of ions in the 
vacuole and the synthesis of compatible solutes in the cytosol (Hajiboland et al. 2014; 
Razzaghi et al. 2015). Therefore, salinity-induced changes in levels of various organic 
metabolites such as reducing sugars, starch, total proteins, total free amino acids and 
proline were analyzed to determine the role of these organic metabolites in osmotic 
adjustment and salt tolerance in A. karroo and A. saligna. We observed a significant 
increase in the reducing sugar content under extreme salt level and a gradual decrease 
in starch content with an increase in salinity (Figure 5). Decreasing the starch content 
and increasing the reducing sugar content under higher salinity conditions could be 
due to conversion of starch to provide more sugar and energy for osmotic protection 
under increased salinity (Thalmann and Santelia 2014). Sugars play a key role in 
adaptive processes related to NaCl tolerance via interdependent mechanisms of 
growth and osmoregulation (Sharif and Khan 2016).  For example, Chaum et al. (2009) 
found that the total soluble sugar level of a salt-resistant rice variety is higher than 
that of the salt-sensitive variety, and that the sugars enhance salt-induced osmotic 
stress resistance in rice plants. 

In the leaves of the two acacia species studied in this work, the total content 
of free amino acids and proline increased under the three NaCl concentrations 
compared to the control, especially under the 600 mM treatment. The high 
accumulation of free amino acids may be due to the high biosynthesis of amino acids 
or the progressive activity of the protease for osmotic adjustment (Parida and Das 
2005). 
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Figure 5. Effect of salt stress on the content of (A) proline, (B) soluble proteins, (C) total free amino acids, (D) starch, and 
(E) reducing sugars in the leaves of A. karroo and A. saligna after 21 days of saline treatment at different levels. For each 
species, means, in each box, with similar letters are not significantly different at the 5% probability level using Duncan’s 

test. (LDM : leaf dry matter). 

Proline is known to provide improved protection against salinity by eliminating 
free radicals, stabilizing membranes, proteins and enzymes, and maintaining ionic 
homeostasis (Dagar and Minhas 2016). The present study showed an increase in 
proline content at all salt concentrations. The increase in saline-induced leaf proline in 
these two acacia species may be due to improved proline biosynthesis and/or may be 
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due to the inhibition of proline catabolism. The increase in leaf proline content in 
response to salt stress has been reported in many forest and fruit trees: Olive tree 
(Ahmed et al. 2012), Date palm (Yaish 2015), Lemon tree (Balal et al. 2011), Eucalyptus 
(Chaum et al. 2013), Acacia auriculiformis (Patel et al. 2010), Acacia saligna (Soliman 
et al. 2012), Acacia arabica (Lassouane et al. 2013), Acacia longifolia (Morais et al. 
2012) and Acacia senegal (Patel et al. 2011). Proline production induced by salt stress 
has been demonstrated in halophyte and glycophyte species; except that halophytes 
accumulate more leaf proline under normal and stressed conditions (Himabindu et al. 
2016). It has been shown that proline also has an osmoregulatory function interpreted 
by membrane protection and enzyme stabilization (Zouari et al. 2016). Therefore, the 
osmoregulatory function of proline in A. karroo and A. saligna shows clearly through 
the increase of its content, joining an increase in the content of total amino acids, 
playing a role in the maintenance of osmotic equilibrium of the cell under high salinity 
conditions. In fact, by maintaining high levels of free amino acids, halophytes are able 
to satisfy the rise demand for amino acids during protein metabolism (Suprasanna et 
al. 2016). The observed decreases in starch and protein corroborated the increase in 
levels of sugars and amino acids in A. karroo leaves under different levels of salinity 
(Figure 6). 

 

Figure 6. Example of correlation in A. karroo leaves: (A) Soluble proteins and (B) Starch and reducing sugars. (LDM : leaf 
dry matter). 

4 Conclusion 

Although the plants of A. karroo and A. saligna showed some changes under 
moderate and high saline stress, they continued their vegetative growth and 
maintained a considerable and fairly stable dry biomass was observed in A. karroo 
under salinity conditions. This adaptation proved very specific to each species for 
better survival in saline environments. Evaluation of seedling survival or leaf Na+ 
content may not be significant as a predictor of salinity tolerance without further 
information, such as the effect of salinity on various growth parameters at the time of 
application in other organs such as stems and roots. In this work, we sought to 
describe the mechanisms used to measure some of the processes that can contribute 
to salinity tolerance. The parameters estimated during this study are valid only for the 
case of young plants in pots and under well-defined conditions. It would be necessary 
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to validate our results with an afforestation program. On the other hand, this study 
does not exclude that these acacia species are considered as potential halophytic 
species to be cultivated in saline lands, thus making them favorable to agroforestry 
practices, especially since these forest trees have the capacity to revegetate nutrient-
poor soils. 

5 Acknowledgment 

The present work was realized within the framework of the project 
“Contribution to the study of the effects of drought and salt stress on Acacia species in 
Algeria”. We are grateful to Bruce Roger Maslin, Senior Principal Research Scientist 
(Department of Parks and Wildlife, Australia) and creator of the WorldWide-Wattle 
website. 

6 References 

Ahmed CB, Magdich S, Rouina BB, Boukhris M, Abdullah FB (2012) Saline water irrigation effects on soil 
salinity distribution and some physiological responses of field grown Chemlali olive. J Environ 
Manage 113:538-544. https://doi.org/10.1016/j.jenvman.2012.03.016  

Ajmi A, Vázquez S, Morales F, Chaari A, El-Jendoubi H, Abadía A, Larbi A (2018) Prolonged artificial shade 
affects morphological, anatomical, biochemical and ecophysiological behavior of young olive 
trees (cv. Arbosana). Sci Hortic-Amsterdam 241:275-284.  
https://doi.org/10.1016/j.scienta.2018.06.089  

Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards 
improved salt stress tolerance in crop plants. Genet Mol Biol 40(1):326-345. 
https://doi.org/10.1590/1678-4685-gmb-2016-0106  

Amtmann A, Armengaud P and Volkov V (2018) Potassium nutrition and salt stress. Annual Plant 
Reviews 328-379. https://doi.org/10.1002/9781119312994.apr0151  

Bâ AM, Diédhiou, AG, Prin Y, Galiana A, Duponnois R (2010) Management of ectomycorrhizal symbionts 
associated to useful exotic tree species to improve reforestation performances in tropical 
Africa. Ann Forest Sci 67(3):301. https://doi.org/10.1051/forest/2009108  

Bader B, Aissaoui F, Kmicha I, Salem AB, Chehab H, Gargouri K, Chaieb M (2015) Effects of salinity stress 
on water desalination, olive tree (Olea europaea L. cvs ‘Picholine’, ‘Meski’ and ‘Ascolana’) 
growth and ion accumulation. Desalination 364:46-52.  
https://doi.org/10.1016/j.desal.2015.01.002  

Balal RM, Ashraf MY, Khan MM, Jaskani MJ, Ashfaq M (2011) Influence of salt stress on growth and 
biochemical parameters of citrus rootstocks. Pak J Bot 43(4):2135-2141.  

Bose J, Rodrigo-Moreno A, Shabala S (2014) ROS homeostasis in halophytes in the context of salinity 
stress tolerance. J Exp Bot 65(5):1241-1257. https://doi.org/10.1093/jxb/ert430  

Boukhatem ZF, Domergue O, Bekki A, Merabet C, Sekkour S, Bouazza F, Galiana A (2012) Symbiotic 
characterization and diversity of rhizobia associated with native and introduced acacias in arid 
and semi-arid regions in Algeria. FEMS Microbiol Ecol 80(3):534-547. 
https://doi.org/10.1111/j.1574-6941.2012.01315.x  

Braccini ADL, Ruiz HA, Braccini MDC, Reis MS (1996) Germinação e vigor de sementes de soja sob 
estresse hídrico induzido por soluções de cloreto de sódio, manitol e polietileno glicol. Revista 
Brasileira de Sementes 18(1):10-16. https://doi.org/10.17801/0101-3122/rbs.v18n1p10-16  

Bradford MM (1976) A rapid sensitive method for the quantification of microgram quantities of protein 
utilizing the principle of protein-Dye Binding. Anal Biochem 72:248-254. 
https://doi.org/10.1016/0003-2697(76)90527-3  

Chakraborty K, Basak N, Bhaduri D, Ray S, Vijayan J, Chattopadhyay K, Sarkar RK (2018) Ionic Basis of Salt 
Tolerance in Plants: Nutrient Homeostasis and Oxidative Stress Tolerance. In Plant Nutrients 

https://doi.org/10.1016/j.jenvman.2012.03.016
https://doi.org/10.1016/j.scienta.2018.06.089
https://doi.org/10.1590/1678-4685-gmb-2016-0106
https://doi.org/10.1002/9781119312994.apr0151
https://doi.org/10.1051/forest/2009108
https://doi.org/10.1016/j.desal.2015.01.002
https://doi.org/10.1093/jxb/ert430
https://doi.org/10.1111/j.1574-6941.2012.01315.x
https://doi.org/10.17801/0101-3122/rbs.v18n1p10-16
https://doi.org/10.1016/0003-2697(76)90527-3


REFORESTA (2019) 7: 33-49  Kheloufi et al. 

Reforesta Scientific Society   46 
 

and Abiotic Stress Tolerance (pp. 325-362). Springer, Singapore. https://doi.org/10.1007/978-
981-10-9044-8_14  

Chaum S, Somsueb S, Samphumphuang T, Kirdmanee C (2013) Salt tolerant screening in eucalypt 
genotypes (Eucalyptus spp.) using photosynthetic abilities, proline accumulation, and growth 
characteristics as effective indices. In Vitro Cellular and Developmental Biology-Plant 49(5):611-
619. https://doi.org/10.1007/s11627-013-9537-5  

Chaum S, Supaibulwattana K, Kirdmanee C (2009) Comparative effects of salt stress and extreme pH 
stress combined on glycinebetaine accumulation, photosynthetic abilities and growth 
characters of two rice genotypes. Rice Sci 16(4):274-282. https://doi.org/10.1016/S1672-
6308(08)60091-8  

Chen S, Polle A (2010) Salinity tolerance of Populus. Plant Biology 12(2):317-333. 
https://doi.org/10.1111/j.1438-8677.2009.00301.x  

Choi WG, Miller G, Wallace I, Harper J, Mittler R, Gilroy S (2017) Orchestrating rapid long‐distance 
signaling in plants with Ca2+, ROS and electrical signals. The Plant Journal 90(4):698-707. 
https://doi.org/10.1111/tpj.13492  

Dagar JC and Minhas PS (2016) Saline irrigation for productive agroforestry systems. In Agroforestry for 
the Management of Waterlogged Saline Soils and Poor-Quality Waters (pp. 145-161). Springer, 
New Delhi. https://doi.org/10.1007/978-81-322-2659-8_9  

De Vynck JC, Van Wyk BE, Cowling RM (2016) Indigenous edible plant use by contemporary Khoe-San 
descendants of South Africa's Cape South Coast. South African Journal of Botany 102:60-69. 
https://doi.org/10.1016/j.sajb.2015.09.002  

Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. 
Trends Plant Sci 19(6):371-379. https://doi.org/10.1016/j.tplants.2014.02.001  

Diouf IA, Derivot L, Bitton F, Pascual L, Causse M (2018) Water Deficit and Salinity Stress Reveal Many 
Specific QTL for Plant Growth and Fruit Quality Traits in Tomato. Front Plant Sci 9:279. 
https://doi.org/10.3389/fpls.2018.00279  

Dreyer I, Uozumi N (2011) Potassium channels in plant cells. The FEBS Journal 278(22):4293-4303. 
https://doi.org/10.1111/j.1742-4658.2011.08371.x  

Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, 
and management. A review. Agronomy for Sustainable Development 35(2):461-481. 
https://doi.org/10.1007/s13593-015-0287-0  

Feng K, Cui L, Lv S, Bian J, Wang M, Song W, Nie X (2018) Comprehensive evaluating of wild and 
cultivated emmer wheat (Triticum turgidum L.) genotypes response to salt stress. Plant Growth 
Regul 84(2):261-273. https://doi.org/10.1007/s10725-017-0337-5  

Gautier D, Garcia C Negi S, Wardell DA (2015) The Limits and Failures of Existing Forest Governance 
Standards in Semi-Arid Contexts. Int Forest Rev 17(S2):114-126.  
https://doi.org/10.1505/146554815815834831  

Gibbs HK, Salmon JM (2015) Mapping the world's degraded lands. Appl Geogr 57:12-21. 
https://doi.org/10.1016/j.apgeog.2014.11.024  

Green MB, Schwarz JH (1989) Anomaly cancellations in supersymmetric D=10 gauge theory and 
superstring theory. In Supergravities in Diverse Dimensions: Commentary and Reprints (In 2 
Volumes) (pp. 1146-1151). https://doi.org/10.1142/9789814542340_0071  

Hajiboland R, Norouzi F, Poschenrieder C (2014) Growth, physiological, biochemical and ionic responses 
of pistachio seedlings to mild and high salinity. Trees 28(4):1065-1078. 
https://doi.org/10.1007/s00468-014-1018-x  

Hamed KB, Dabbous A, El Shaer H, Abdely C (2018) Salinity responses and adaptive mechanisms in 
halophytes and their exploitation for producing salinity tolerant crops. In Salinity Responses 
and Tolerance in Plants, Volume 2 (pp. 1-19). Springer, Cham. https://doi.org/10.1007/978-3-
319-90318-7_1  

Hansen J, Møller IB (1975) Percolation of starch and soluble carbohydrates from plant tissue for 
quantitative determination with anthrone. Anal Biochem 68:87-94. 
https://doi.org/10.1016/0003-2697(75)90682-X  

https://doi.org/10.1007/978-981-10-9044-8_14
https://doi.org/10.1007/978-981-10-9044-8_14
https://doi.org/10.1007/s11627-013-9537-5
https://doi.org/10.1016/S1672-6308(08)60091-8
https://doi.org/10.1016/S1672-6308(08)60091-8
https://doi.org/10.1111/j.1438-8677.2009.00301.x
https://doi.org/10.1111/tpj.13492
https://doi.org/10.1007/978-81-322-2659-8_9
https://doi.org/10.1016/j.sajb.2015.09.002
https://doi.org/10.1016/j.tplants.2014.02.001
https://doi.org/10.3389/fpls.2018.00279
https://doi.org/10.1111/j.1742-4658.2011.08371.x
https://doi.org/10.1007/s13593-015-0287-0
https://doi.org/10.1007/s10725-017-0337-5
https://doi.org/10.1505/146554815815834831
https://doi.org/10.1016/j.apgeog.2014.11.024
https://doi.org/10.1142/9789814542340_0071
https://doi.org/10.1007/s00468-014-1018-x
https://doi.org/10.1007/978-3-319-90318-7_1
https://doi.org/10.1007/978-3-319-90318-7_1
https://doi.org/10.1016/0003-2697(75)90682-X


REFORESTA (2019) 7: 33-49  Kheloufi et al. 

Reforesta Scientific Society   47 
 

Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19-31. 
https://doi.org/10.1016/j.envexpbot.2013.03.001  

Himabindu Y, Chakradhar T, Reddy MC, Kanygin A, Redding KE, Chandrasekhar T (2016) Salt-tolerant 
genes from halophytes are potential key players of salt tolerance in glycophytes. Environ Exp 
Bot 124:39-63. https://doi.org/10.1016/j.envexpbot.2015.11.010  

John VS, Catalina C, Charlotte P, Juan B (2003) Efficient leaf ion partitioning, an overriding condition for 
abscisic acid-controlled stomatal and leaf growth responses to NaCl salinization in two legumes. 
J Exp Bot 54:2111-2119. https://doi.org/10.1093/jxb/erg231  

Kheloufi A (2017) Germination of seeds from two leguminous trees (Acacia karroo and Gleditsia 
triacanthos) following different pre-treatments. Seed Sci Technol 45:1-4. 
https://doi.org/10.15258/sst.2017.45.1.21  

Kheloufi A, Boukhatem ZF, Mansouri LM, Djelilate M (2018a) Inventory and geographical distribution of 
Acacia Mill. Fabaceae Mimosaceae) species in Algeria. Biodiversity Journal 9(1):51-60.  

Kheloufi A, Chorfi A, Mansouri LM. 2016. Comparative effect of NaCl and CaCl2 on seed germination of 
Acacia saligna L. and Acacia decurrens Willd. International Journal of Biosciences 8(6):1-13. 
https://doi.org/10.12692/ijb/8.6.1-13  

Kheloufi A, Chorfi A, Mansouri LM (2017a) Germination kinetics in two Acacia karroo Hayne ecotypes 
under salinity conditions. Open Access Library Journal 4:1-11. 
https://doi.org/10.4236/oalib.1103319  

Kheloufi A, Chorfi A, Mansouri LM, Benyamina H (2018b) Morpho-physiological characterization and 
photosynthetic pigment contents of Acacia karroo Hayne seedlings under saline conditions. 
Agricult Forest 64(2):87-99. https://doi.org/10.17707/AgricultForest.64.2.06  

Kheloufi A, Mansouri LM (2017) Effect of sulphuric acid on the germination of a forage tree Acacia 
nilotica (L.) subsp. tomentosa. Livestock Research for Rural Development 29:1-11.  

Kheloufi A, Mansouri LM, Boukhatem ZF (2017b) Application and use of sulfuric acid to improve seed 
germination of three acacia species. Reforesta 3:1-10. https://doi.org/10.21750/REFOR.3.01.25  

Krishnamurthy SL, Gautam RK, Sharma PC, Sharma DK (2016) Effect of different salt stresses on agro-
morphological traits and utilization of salt stress indices for reproductive stage salt tolerance in 
rice. Field Crop Res 190:26-33. https://doi.org/10.1016/j.fcr.2016.02.018  

Lassouane N, Aïd F, Lutts S (2013) Water stress impact on young seedling growth of Acacia arabica. Acta 
Physiol Plant 35(7):2157-2169. https://doi.org/10.1007/s11738-013-1252-7  

Mansouri LM (2011) Production d’inoculum de Rhizobium associés à Acacia salignapour revégétaliser la 
carrière de Terga (Aïn Temouchent). Mémoire de magistère, Université d’Oran Es-sénia, Oran, 
Algérie 116 pp.  

Miller G, Suzuki N, Ciftci‐Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling 
during drought and salinity stresses. Plant, Cell and Environment 33(4):453-467. 
https://doi.org/10.1111/j.1365-3040.2009.02041.x  

Moir-Barnetson L, Veneklaas EJ, Colmer TD (2016) Salinity tolerances of three succulent halophytes 
(Tecticornia spp.) differentially distributed along a salinity gradient. Funct Plant Biol 43(8):739-
750. https://doi.org/10.1071/FP16025  

Mokoboki HK, Ndlovu LR, Malatje MM (2011) Intake and relative palatability indices of acacia species 
fed to sheep and goats. Agroforest Syst 81(1):31-35. https://doi.org/10.1007/s10457-010-9352-
5  

Morais MC, Panuccio MR, Muscolo A, Freitas H (2012) Salt tolerance traits increase the invasive success 
of Acacia longifolia in Portuguese coastal dunes. Plant Physiol Bioch 55:60-65. 
https://doi.org/10.1016/j.plaphy.2012.03.013  

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651-681. 
https://doi.org/10.1146/annurev.arplant.59.032607.092911  

Nedjimi B (2017) Calcium application enhances plant salt tolerance: a review. In Essential Plant Nutrients 
(pp. 367-377). Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_15  

Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. 
Ann Bot-London 119(1):1-11. https://doi.org/10.1093/aob/mcw191  

https://doi.org/10.1016/j.envexpbot.2013.03.001
https://doi.org/10.1016/j.envexpbot.2015.11.010
https://doi.org/10.1093/jxb/erg231
https://doi.org/10.15258/sst.2017.45.1.21
https://doi.org/10.12692/ijb/8.6.1-13
https://doi.org/10.4236/oalib.1103319
https://doi.org/10.17707/AgricultForest.64.2.06
https://doi.org/10.21750/REFOR.3.01.25
https://doi.org/10.1016/j.fcr.2016.02.018
https://doi.org/10.1007/s11738-013-1252-7
https://doi.org/10.1111/j.1365-3040.2009.02041.x
https://doi.org/10.1071/FP16025
https://doi.org/10.1007/s10457-010-9352-5
https://doi.org/10.1007/s10457-010-9352-5
https://doi.org/10.1016/j.plaphy.2012.03.013
https://doi.org/10.1146/annurev.arplant.59.032607.092911
https://doi.org/10.1007/978-3-319-58841-4_15
https://doi.org/10.1093/aob/mcw191


REFORESTA (2019) 7: 33-49  Kheloufi et al. 

Reforesta Scientific Society   48 
 

Nemati I, Moradi F, Gholizadeh S, Esmaeili MA, Bihamta MR (2011) The effect of salinity stress on ions 
and soluble sugars distribution in leaves, leaf sheaths and roots of rice (Oryza sativa L.) 
seedlings. Plant Soil Environ 57(1):26-33. https://doi.org/10.17221/71/2010-PSE  

Nie W, Gong B, Chen Y, Wang J, Wei M, Shi Q (2018) Photosynthetic capacity, ion homeostasis and 
reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber 
seedlings tolerance to alkaline stress. Sci Hortic-Amsterdam 235:413-423. 
https://doi.org/10.1016/j.scienta.2018.03.011  

Onodera M, Nakajima T, Nanzyo M, Takahashi T, Xu D, Homma K, Kokubun M (2019) Regulation of root-
to-leaf Na and Cl transport and its association with photosynthetic activity in salt-tolerant 
soybean genotypes. Plant Prod Sci 1-13. https://doi.org/10.1080/1343943X.2018.1561198  

Parida AK, Das AB (2005) Salt Tolerance and Salinity Effects on Plants: A Review. Ecotox Environ Safe 
60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010  

Patel AD, Jadeja H, Pandey AN (2010) Effect of salinization of soil on growth, water status and nutrient 
accumulation in seedlings of Acacia auriculiformis (Fabaceae). J Plant Nutr 33(6):914-932. 
https://doi.org/10.1080/01904161003669939  

Patel NT, Panchal NS, Pandey IB, Pandey AN (2011) Implications of calcium nutrition on the response of 
Acacia senegal (Mimosaceae) to soil salinity. Anal Biol 33, 23-34. 

Prasath A, Gomathinayagam M (2016) Variation in mineral contents of Ceriops decandra (Griff.) Ding 
Hou under NaCl stress-A true mangrove species. Ann Plant Sci 5(12):1458-1462. 
https://doi.org/10.21746/aps.2016.12.001  

Rahman MM, Rahman MA, Miah MG, Saha SR, Karim MA, Mostofa MG (2017) Mechanistic Insight into 
Salt Tolerance of Acacia auriculiformis: The Importance of Ion Selectivity, Osmoprotection, 
Tissue Tolerance, and Na+ Exclusion. Frontiers in plant science 8:155. 
https://doi.org/10.3389/fpls.2017.00155  

Razzaghi F, Jacobsen SE, Jensen CR, Andersen MN (2015) Ionic and photosynthetic homeostasis in 
quinoa challenged by salinity and drought–mechanisms of tolerance. Funct Plant Biol 42(2):136-
148. https://doi.org/10.1071/FP14132  

Ringel C, Siebert S, Wienhaus O (2003) Photometric determination of proline in quartz microplates: 
remarks on specificity. Anal Biochem 313:167-169. https://doi.org/10.1016/S0003-
2697(02)00565-1  

Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotech 26:115-124. 
https://doi.org/10.1016/j.copbio.2013.12.004  

Schneider T, Ashton MS, Montagnini F, Milan PP (2014) Growth performance of sixty tree species in 
smallholder reforestation trials on Leyte, Philippines. New Forest 45(1), 83-96. 
https://doi.org/10.1007/s11056-013-9393-5  

Seydi AB (2003) Determination of the salt tolerance of some barley genotypes and the characteristics 
affecting tolerance. Turk J Agric For 27:253-260.  

Shabala S, Munns R (2017) Salinity stress: physiological constraints and adaptive mechanisms. Plant 
stress physiology, 2nd edn. CABI, Wallingford 24-63.  
https://doi.org/10.1079/9781780647296.0024  

Sharif F, Khan AU (2016) Effect of salinity on tissue nutrient contents of the four dryland tree species of 
Indus flood plains. Arid Land Res Manag 30(1):65-78.  
https://doi.org/10.1080/15324982.2015.1054004  

Soliman AS, Shanan NT, Massoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna 
(Labill.) plant by arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 
11(5):1259-1266. https://doi.org/10.5897/AJB11.2287  

Suprasanna P, Nikalje GC, Rai AN (2016) Osmolyte accumulation and implications in plant abiotic stress 
tolerance. In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics 
Technologies (pp. 1-12). Springer, New Delhi.  https://doi.org/10.1007/978-81-322-2616-1_1  

Tahjib-Ul-Arif M, Roy PR, Sohag AAM, Afrin S, Rady MM, Hossain MA (2018) Exogenous Calcium 
Supplementation Improves Salinity Tolerance in BRRI Dhan28; a Salt-Susceptible High-Yielding 
Oryza Sativa Cultivar. Journal of Crop Science and Biotechnology 21(4):383-394. 
https://doi.org/10.1007/s12892-018-0098-0  

https://doi.org/10.17221/71/2010-PSE
https://doi.org/10.1016/j.scienta.2018.03.011
https://doi.org/10.1080/1343943X.2018.1561198
https://doi.org/10.1016/j.ecoenv.2004.06.010
https://doi.org/10.1080/01904161003669939
https://doi.org/10.21746/aps.2016.12.001
https://doi.org/10.3389/fpls.2017.00155
https://doi.org/10.1071/FP14132
https://doi.org/10.1016/S0003-2697(02)00565-1
https://doi.org/10.1016/S0003-2697(02)00565-1
https://doi.org/10.1016/j.copbio.2013.12.004
https://doi.org/10.1007/s11056-013-9393-5
https://doi.org/10.1079/9781780647296.0024
https://doi.org/10.1080/15324982.2015.1054004
https://doi.org/10.5897/AJB11.2287
https://doi.org/10.1007/978-81-322-2616-1_1
https://doi.org/10.1007/s12892-018-0098-0


REFORESTA (2019) 7: 33-49  Kheloufi et al. 

Reforesta Scientific Society   49 
 

Thalmann M, Santelia D (2017) Starch as a determinant of plant fitness under abiotic stress. New 
Phytologist 214(3): 943-951. https://doi.org/10.1111/nph.14491  

Theerawitaya C, Tisarum R, Samphumphuang T, Singh HP, Cha-Um S, Kirdmanee C, Takabe T (2015) 
Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps 
seedlings in response to salt stress under greenhouse. Front Plant Sci 6:630. 
https://doi.org/10.3389/fpls.2015.00630  

Yaish MW (2015) Proline accumulation is a general response to abiotic stress in the date palm tree 
(Phoenix dactylifera L.). Genet Mol Res 14(3):9943-9950.  
https://doi.org/10.4238/2015.August.19.30  

Yemm EW, Cocking EC, Ricketts RE (1955) The determination of amino-acids with ninhydrin. Analyst 
80(948):209-214. https://doi.org/10.1039/an9558000209  

Zhang YM, Liu ZH, Wen ZY, Zhang HM, Yang F, Guo XL (2012) The vacuolar Na+–H+ antiport gene TaNHX2 
confers salt tolerance on transgenic Alfalfa (Medicago sativa). Functional Plant Biology 
39(8):708-716. https://doi.org/10.1071/FP12095  

Zika M, Erb KH (2009) The global loss of net primary production resulting from human-induced soil 
degradation in drylands. Ecol Econ 69(2):310-318.  
https://doi.org/10.1016/j.ecolecon.2009.06.014  

Zouari M, Elloumi N, Ahmed CB, Delmail D, Rouina BB, Abdallah FB, Labrousse P (2016) Exogenous 
proline enhances growth, mineral uptake, antioxidant defense, and reduces cadmium-induced 
oxidative damage in young date palm (Phoenix dactylifera L.). Ecol Eng 86:202-209. 
https://doi.org/10.1016/j.ecoleng.2015.11.016  

https://doi.org/10.1111/nph.14491
https://doi.org/10.3389/fpls.2015.00630
https://doi.org/10.4238/2015.August.19.30
https://doi.org/10.1039/an9558000209
https://doi.org/10.1071/FP12095
https://doi.org/10.1016/j.ecolecon.2009.06.014
https://doi.org/10.1016/j.ecoleng.2015.11.016

