Exploring the potential of two-aged white spruce plantations for the production of sawlog volume with simulations using SORTIE-ND
DOI:
https://doi.org/10.21750/REFOR.10.02.85Keywords:
intensive wood production, spatially explicit modelling, Picea glauca, irregular shelterwoodAbstract
The main objective for even-aged plantation (EAP) management of producing sawlog material has driven practices towards low initial planting densities and lower post thinning densities. For semi-shade tolerant species, the resulting stand density potentially leaves enough growing space for the introduction of a second cohort of trees in the understory, making it a two-aged plantation (TAP). TAPs could have many silvicultural benefits, especially in sensitive areas where intensive treatments associated with EAPs are incompatible with local management objectives. White spruce (Picea glauca) is a good candidate species for modeling TAPs because it is the most widely planted tree species in Canada and has proven tolerance to understory planting. SORTIE-ND, a single-tree spatially explicit growth model was used to explore the yield of variable density and rotation length scenarios when each white spruce cohort is introduced mid rotation, compared to traditional even-aged management. All TAP scenarios tested produced more sawlog volume and more merchantable volume than equivalent densities of EAPs. The lowest density tested, 400 stems ha-1 planted every 35 years, had the highest sawlog yields (3.23 m3 ha-1 yr-1). Considering smaller size products changes the optimum TAP scenario but maintains the advantage over EAPs.
Downloads
References
Acker SA, Sabin TE, Ganio LM, McKee WA (1998) Development of old-growth structure and timber volume growth trends in maturing Douglas-fir stands. Forest Ecol Manage 104(1-3): 265-280. https://doi.org/10.1016/S0378-1127(97)00249-1 DOI: https://doi.org/10.1016/S0378-1127(97)00249-1
Anonym (2014) NB Herbicide Use Fact Sheet ̶ Everything you need to know to write an effective letter to eliminate herbicide spraying in our forests! New Brunswick Environmental Network, 22 p. https://nben.ca/en/resources/reference-library/category/438-glyphosate-spraying?download=1833:herbicide-use-in-nb-everything-you-need-to-know-to-write-an-effective-letter-to-eliminate-herbicide-spraying-of-our-forest-concerned-new-brunswickers-january-1-2014 [accessed August 2020].
Astrup R, Larson BC (2006) Regional variability of species-specific crown openness for aspen and spruce in western boreal Canada. Forest Ecol Manage 228(1): 241-250. https://doi.org/10.1016/j.foreco.2006.02.048 DOI: https://doi.org/10.1016/j.foreco.2006.02.048
Barrette M, Leblanc M, Thiffault N, Paquette A., Lavoie L, Bélanger L, Bujold F, Côté L, Lamoureux J, Schneider R, Tremblay JP, Côté S, Boucher Y, Deshaies ME (2014) Issues and solutions for intensive plantation silviculture in a context of ecosystem management. The Forestry Chronicle 90(6): 748-762. https://doi.org/10.5558/tfc2014-147 DOI: https://doi.org/10.5558/tfc2014-147
Beaudet M, Harvey BD, Messier C, Coates KD, Poulin J, Kneeshaw DD, Brais S, Bergeron Y (2011) Managing understory light conditions in boreal mixedwoods through variation in the intensity and spatial pattern of harvest: a modelling approach. Forest Ecol Manage 261(1): 84-94. https://doi.org/10.1016/j.foreco.2010.09.033 DOI: https://doi.org/10.1016/j.foreco.2010.09.033
Bell FW, Kershaw M, Aubin I, Thiffault N, Decosta J, Wiensczyk A (2011) Ecology and traits of plant species that compete with boreal and temperate forest conifers: An overview of available information and its use in forest management in Canada. The Forestry Chronicle 87(2): 161-174. https://doi.org/10.5558/tfc2011-006 DOI: https://doi.org/10.5558/tfc2011-006
Blaha J, Matjková I (2012) Spruce Monocultures in the Sumava Mountains Case Study. In: Tree Trouble, A Compilation of Testimonies on the Negative Impact of Large¬ scale Monoculture Tree Plantations prepared for the sixth Conference of the Parties of the Framework Convention on Climate Change by Friends of the Earth International in cooperation with the World Rainforest Movement and FERN pp. 45-52.
Bose AK, Harvey BD, Coate, KD, Brais S, Bergeron Y (2015) Modelling stand development after partial harvesting in boreal mixedwoods of eastern Canada. Ecological Modelling 300: 123-136. https://doi.org/10.1016/j.ecolmodel.2015.01.002 DOI: https://doi.org/10.1016/j.ecolmodel.2015.01.002
Brace LG, Bella IE (1988) Understanding the understory: Dilemma and opportunity. pp. 69-98 In: Samoil JK (ed.). Management and uti-lization of northern mixedwoods. Can For Serv Edmonton, AB. Information Report. NOR-X-296.
Brockerhoff EG, Jactel H, Parrotta JA, Quine CP, Sayer J (2008) Plantation forests and biodiversity: oxymoron or opportunity? Biodivers Conserv 17: 925-951. https://doi.org/10.1007/s10531-008-9380-x DOI: https://doi.org/10.1007/s10531-008-9380-x
Brown ML, Canham CD, Murphy L, Donovan TM (2018) Timber harvest as the predominant disturbance regime in northeastern U.S. forests: effects of harvest intensification. Ecosphere 9(3): e02062. https://doi.org/10.1002/ecs2.2062 DOI: https://doi.org/10.1002/ecs2.2062
Canham CD, Finzi AC, Pacala SW, Burnbank DH (1994) Causes and consequences of resource heterogeneity in forests: interspecific variation in light transmission by canopy trees. Can J For Res 24(2): 337-349. https://doi.org/10.1139/x94-046 DOI: https://doi.org/10.1139/x94-046
Canham CD, Coates KD, Bartemucci P, Quaglia S (1999) Measurement and modeling of spatially explicit variation in light transmission through interior cedar-hemlock forests of British Columbia. Can J For Res 29(11): 1775-1783. https://doi.org/10.1139/x99-151 DOI: https://doi.org/10.1139/x99-151
Canham CD, LePage PT, Coates KD (2004) A neighborhood analysis of canopy tree competition: effects of shading versus crowding. Can J For Res 34(4): 778-787. https://doi.org/10.1139/x03-232 DOI: https://doi.org/10.1139/x03-232
Carey AB (2003) Biocomplexity and restoration of biodiversity in temperate coniferous forest: inducing spatial heterogeneity with variable‐density thinning. Forestry (Lond) 76(2): 127-136. Oxford Academic. https://doi.org/10.1093/forestry/76.2.127 DOI: https://doi.org/10.1093/forestry/76.2.127
Chan SS, Larson DJ, Maas-Hebner KG, Emmingham WH, Johnston SR, Mikowski DA (2006) Overstory and understory development in thinned and underplanted Oregon Coast Range Douglas-fir stands. Can J For Res 36(10): 2696-2711. https://doi.org/10.1139/x06-151 DOI: https://doi.org/10.1139/x06-151
Chang SJ (1998) A generalized Faustmann model for the determination of optimal harvest age. Can J For Res 28(5): 652-659. https://doi.org/10.1139/x98-017 DOI: https://doi.org/10.1139/x98-017
Coates KD, Canham CD, Beaudet M, Sachs DL, Messier C (2003) Use of a spatially explicit individual-tree model (SORTIE/BC) to explore the implications of patchiness in structurally complex forests. Forest Ecol Manage 186(1-3): 297-310. https://doi.org/10.1016/S0378-1127(03)00301-3 DOI: https://doi.org/10.1016/S0378-1127(03)00301-3
Coates KD (2010) Evaluation of the Complex Stand Simulation Model SORTIE-ND for Timber Supply Review in Sub-Boreal Forests of Northern British Columbia (Final Technical Report) - FSP Project Y103187. Bulkley Valley Centre for Natural Resources Research and Management. British Columbia, Canada. 23 p.
Courbet F, Laugier N, Oswald H, Ravart m, Jean F (2002) Sylviculture, croissance et production de l'Épicéa de Sitka. Premiers résultats du dispositif expérimental d'Ecouves (Orne). Revue Forestière Française (1):67. https://doi.org/10.4267/2042/4902 DOI: https://doi.org/10.4267/2042/4902
Edmunds D, Wollenberg E (2013) Local Forest Management: The Impacts of Devolution Policies. Earthscan. Sterling, VA. https://doi.org/10.4324/9781849771856 DOI: https://doi.org/10.4324/9781849771856
Felton A, Sonesson J, Nilsson U, Lämås T, Lundmark T, Nordin A, Ranius T, Roberge, J-M (2017) Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees. Ambio 46(3): 324-334. https://doi.org/10.1007/s13280-017-0909-7 DOI: https://doi.org/10.1007/s13280-017-0909-7
Forbes AS, Norton DA, Carswell FE (2015) Underplanting degraded exotic Pinus with indigenous conifers assists forest restoration. Ecol Manag Restor 16(1): 41-49. https://doi.org/10.1111/emr.12137 DOI: https://doi.org/10.1111/emr.12137
Frank GS, Rathfon RA, Saunders MR (2018) Ten-year responses of underplanted northern red oak to silvicultural treatments, herbivore exclusion, and fertilization. Forests 9(9): 571. https://doi.org/10.3390/f9090571 DOI: https://doi.org/10.3390/f9090571
Gibson DJ (2014) Methods in Comparative Plant Population Ecology. Oxford University Press https://doi.org/10.1093/acprof:oso/9780199671465.001.0001 DOI: https://doi.org/10.1093/acprof:oso/9780199671465.001.0001
Griess VC, Jackson DJ, Werner HG (2017) Plantation forests: a review of recent developments. CAB Reviews 12(029): 1-5. https://doi.org/10.1079/PAVSNNR201712029 DOI: https://doi.org/10.1079/PAVSNNR201712029
Groot A (1999) Effects of shelter and competition on the early growth of planted white spruce (Picea glauca). Can J For Res 29(7): 1002-1014. https://doi.org/10.1139/x99-064 DOI: https://doi.org/10.1139/x99-064
Grover BE, Bokalo M, Greenway KJ (2014) White spruce understory protection: from planning to growth and yield. The Forest Chronicle 90(1): 35-43. https://doi.org/10.5558/tfc2014-008 DOI: https://doi.org/10.5558/tfc2014-008
Hennigar C, Weiskittel A, Allen HL, MacLean DA (2017) Development and evaluation of a biomass increment based index for site productivity. Can J For Res 47(3): 400 410. https://doi.org/10.1139/cjfr-2016-0330 DOI: https://doi.org/10.1139/cjfr-2016-0330
Heydari M, Abdollahzadeh S, Litkouhi S, Nasrollahi N (2015) Modeling of optimal urban plantation approach to reducing energy consumption in building. Iranian Journal of Forest 7(2):257-270.
Hu L, Zhu J (2008) Improving gap light index (GLI) to quickly calculate gap coordinates. Can J For Res 38(9): 2337-2347. https://doi.org/10.1139/X08-073 DOI: https://doi.org/10.1139/X08-073
Humbert L, Gagnon D, Kneeshaw D, Messier C (2007) A shade tolerance index for common understory species of northeastern North America. Ecol Indic 7(1): 195-207. https://doi.org/10.1016/j.ecolind.2005.12.002 DOI: https://doi.org/10.1016/j.ecolind.2005.12.002
Jaloviar P, Kucbel S, Vencurik J, Kýpetová M, Parobeková Z, Pittner J, Saniga M, Sedmáková D (2018) Underplanted silver fir and common beech cause changes in root stratification and morphology in mature spruce stands. Plant Root 12: 21-30. https://doi.org/10.3117/plantroot.12.21 DOI: https://doi.org/10.3117/plantroot.12.21
Jobidon R (2000) Density-dependent effects of northern hardwood competition on selected environmental resources and young white spruce (Picea glauca) plantation growth, mineral nutrition, and stand structural development - a 5-year study. Forest Ecol Manage 130(1-3): 77-97. https://doi.org/10.1016/S0378-1127(99)00176-0 DOI: https://doi.org/10.1016/S0378-1127(99)00176-0
Johnstone WD, van Thienen FJ (2011) The effects of plantation density on the growth and yield of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.): 20-year results. B.C. Ministry of Forests and Range, For, Sc. Prog. Vernon, BC (Canada). No.102, 7 p
Kabzems R, Comeau PG, Filipescu CN, Rogers B, Nemec AFL (2016) Creating boreal mixedwoods by planting spruce under aspen: successful establishment in uncertain future climates. Can J For Res 46(10): 1217-1223. https://doi.org/10.1139/cjfr-2015-0440 DOI: https://doi.org/10.1139/cjfr-2015-0440
Kelty MJ, Kittredge DB, Kyker-Snowman T, Leighton AD (2003) The Conversion of Even-Aged Stands to Uneven-Aged Structure in Southern New England. North J Appl For 20(3): 109-116. https://doi.org/10.1093/njaf/20.3.109 DOI: https://doi.org/10.1093/njaf/20.3.109
Lei X, Wang W, Peng C (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can J For Res 39(10): 1835-1847. https://doi.org/10.1139/X09-089 DOI: https://doi.org/10.1139/X09-089
Lindenmayer D, Messier C, Paquette A, Hobbs RJ (2015) Managing tree plantations as novel socioecological systems: Australian and North American perspectives. Can J For Res 45(10): 1427-1433. https://doi.org/10.1139/cjfr-2015-0072 DOI: https://doi.org/10.1139/cjfr-2015-0072
MacDonald E, Hubert J (2002) A review of the effects of silviculture on timber quality of Sitka spruce. Forestry 75 (2): 107-138. https://doi.org/10.1093/forestry/75.2.107 DOI: https://doi.org/10.1093/forestry/75.2.107
Mailly D (2014) Application des modèles de croissance internodale variable au Québec. Gouvernement du Québec, Ministère des Ressources naturelles, Direction de la recherche forestière, Guide, 30 p.
Ministère des ressources naturelle et de la faune (MRNF) (2011) Inventaire de qualification des plants résineux cultivés en récipients -- Guide terrain. Ministère des ressources naturelle et de la faune du Québec. Direction générale des pépinières et stations piscicoles.
Mizunaga H, Nagaike T, Yoshida T, Valkonen S (2010) Feasibility of silviculture for complex stand structures: designing stand structures for sustainability and multiple objectives. J For Res 15: 1-2. https://doi.org/10.1007/s10310-009-0177-x DOI: https://doi.org/10.1007/s10310-009-0177-x
Murphy LE (2006) SORTIE-ND User Manual. Version 7.03. Institute of Ecosystem Studies, Millbrook, NY.
Newnham RM (1990) Mesure du défilement de forme variable. Institut forestier national de Petawawa. Ontario. Forêts Canada. No Fo46-11/83-1990F. 39 p.
Paquette A, Bouchard A, Cogliastro A (2006) Survival and growth of under-planted trees: a meta-analysis across four biomes. Ecol Appl 16(4): 1575-1589. https://doi.org/10.1890/1051-0761(2006)016[1575:SAGOUT]2.0.CO;2 DOI: https://doi.org/10.1890/1051-0761(2006)016[1575:SAGOUT]2.0.CO;2
Parent S, Messier C (1996) A simple and efficient method to estimate microsite light availability under a forest canopy. Can J For Res 26(1): 151-154. https://doi.org/10.1139/x26-017 DOI: https://doi.org/10.1139/x26-017
Park A, Wilson ER (2007) Beautiful Plantations: can intensive silviculture help Canada to fulfill ecological and timber production objectives? For Chron 83(6): 825-839. https://doi.org/10.5558/tfc83825-6 DOI: https://doi.org/10.5558/tfc83825-6
Pelletier G, Pitt DG (2008) Silvicultural responses of two spruce plantations to midrotation commercial thinning in New Brunswick. Can J For Res 38(4): 851-867. https://doi.org/10.1139/X07-173 DOI: https://doi.org/10.1139/X07-173
Pitt DG, Comeau PG, Parker WC, Hoepting MK, MacIsaac D, McPherson S, Mihajlovich M (2015). Early vegetation control for the regeneration of a single-cohort, intimate mixture of white spruce and aspen on upland boreal sites - 10th year update. The Forestry Chronicle 91(3): 238-251. https://doi.org/10.5558/tfc2015-045 DOI: https://doi.org/10.5558/tfc2015-045
Pollack J, van Thienen F, LePage P (1990). The Influence of Initial Espacement on the Growth of a 27-year-old Sitka Spruce Plantation. Research Note no. 104 BC Ministry of Forests, 13 p.
Popovich S (1977) Tables de production normale pour les plantations d'épinettes blanches au Québec. Information Report LAU-X-26, Fisheries and Environment Canada, Canadian Forestry Service, Laurentian Forestry Centre. [accessed 5 May 2020] Available from https://cfs.nrcan.gc.ca/pubwarehouse/pdfs/16382.pdf
Pothier D, Savard F (1998) Actualisation des tables de production pour les principales espèces forestières du Québec. Ministère des ressources naturelles, Forêt Québec, Québec.
Pukkala T, Lähde E, Laiho O (2013) Species Interactions in the Dynamics of Even- and Uneven-Aged Boreal Forests. J Sustain Forest 32(4): 371-403. https://doi.org/10.1080/10549811.2013.770766 DOI: https://doi.org/10.1080/10549811.2013.770766
Roberts D (2008) Perspectives d'avenir pour l'industrie des produits forestiers au Nouveau Brunswick: Rapport du groupe de travail sur les perspectives d'avenir pour le secteur forestier du Nouveau Brunswick. Entreprise Nouveau-Brunswick, 34 p.
Routa J, Kilpeläinen A, Ikonen V-P, Asikainen A, Venäläinen A, Peltola H (2019) Effects of intensified silviculture on timber production and its economic profitability in boreal Norway spruce and Scots pine stands under changing climatic conditions. Forestry: An International Journal of Forest Research 92(5): 648-658. https://doi.org/10.1093/forestry/cpz043 DOI: https://doi.org/10.1093/forestry/cpz043
Šafránek Z, Martiník A, Vala V (2018) Model economic comparison of forest regeneration treatments after calamity events of allochthonous spruce stands: conventional artificial regeneration vs. preparatory-birch stand. Zprávy Lesnického Výzkumu 63(2): 92-101.
Sattler DF, LeMay V (2011) A system of nonlinear simultaneous equations for crown length and crown radius for the forest dynamics model SORTIE-ND. Can J For Res 41(8): 1567-1576. https://doi.org/10.1139/x11-078 DOI: https://doi.org/10.1139/x11-078
Savill P, Evans J, Auclair D, Falk J (1997) Plantation Silviculture In Europe. Oxford University Press, New York, NY. DOI: https://doi.org/10.1093/oso/9780198549093.001.0001
Stark H, Nothdurft A, Bauhus J (2013) Allometries for Widely Spaced Populus ssp. and Betula ssp. in Nurse Crop Systems. Forests 4(4): 1003-1031. https://doi.org/10.3390/f4041003 DOI: https://doi.org/10.3390/f4041003
Struckmann E (1983) Management goal: large oak timber. Allgemeine Forstzeitschrift 9/10: 228-229.
Szulecka J, Pretzsch J, Secco L (2014) Paradigms in Tropical Forest Plantations: A Critical Reflection on Historical Shifts in Plantation Approaches. International Forestry Review 16. https://doi.org/10.1505/146554814811724829 DOI: https://doi.org/10.1505/146554814811724829
Tatsuhara S (2001) Modelling growth for two-storied stands: Incorporating an Effect of Shading on the Tree Growth into Growth and Yield Models. Journal of Forest Research 6(4): 231-239. https://doi.org/10.1007/BF02762462 DOI: https://doi.org/10.1007/BF02762462
Thiffault N, Roy V, Prégent G, Cyr G, Jobidon R, Ménétrier J (2003) La sylviculture des plantations résineuses au Québec. Le Naturaliste Canadien 127(1): 63-80.
Thiffault N, Lafleur B, Roy V, DeBlois J (2012) Large planting stock type and mechanical release effects on the establishment success of Picea glauca plantations in Quebec. International Journal of Forestry Research (12): 617392, 12 pp. https://doi.org/10.1155/2012/617392 DOI: https://doi.org/10.1155/2012/617392
Thiffault N, Roy V, Ménétrier J, Prégent G, Rainville A (2013) La plantation. In : Larouche C, Guillemette F, Raymond P, Saucier JP (eds), Le guide sylvicole du Québec. Tome 2. Les concepts et l'application de la sylviculture. Québec, QC., pp. 196-225.
Truax B, Lambert F, Gagnon D (2000) Herbicide-free plantations of oaks and ashes along a gradient of open to forested mesic environments. Forest Ecol Manage 137(1-3): 155 169. https://doi.org/10.1016/S0378-1127(99)00324-2 DOI: https://doi.org/10.1016/S0378-1127(99)00324-2
Truax B, Gagnon D, Fortier J, Lambert F, Pétrin MA (2018) Ecological Factors Affecting White Pine, Red Oak, Bitternut Hickory and Black Walnut Underplanting Success in a Northern Temperate Post-Agricultural Forest. Forests 9(8):499. https://doi.org/10.3390/f9080499 DOI: https://doi.org/10.3390/f9080499
Viereck LA, Dyrness CT, Van Cleve K, Foote M (1983) Vegetation, soils, and forest productivity in selected forest types in interior Alaska. Can J For Res 13(5): 703-720. https://doi.org/10.1139/x83-101 DOI: https://doi.org/10.1139/x83-101
Walker JCF (1993) Characteristics of stemwood and their manipulation. In: Primary Wood Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8110-3_6 DOI: https://doi.org/10.1007/978-94-015-8110-3_6
West PW (2014) Growing Plantation Forests. Second Edition. Springer International Publishing, New York, NY. 304 p. https://doi.org/10.1007/978-3-319-01827-0 DOI: https://doi.org/10.1007/978-3-319-01827-0
Wilson JS, Oliver CD (2000) Stability and density management in Douglas-fir plantations. Can J For Res 30(6): 910-920. https://doi.org/10.1139/x00-027 DOI: https://doi.org/10.1139/x00-027
Wyatt S, Rousseau MH, Nadeau S, Thiffault N, Guay L (2011) Social Concerns, Risk and The Acceptability of Forest Vegetation Management Alternatives: Insights for Managers. The Forestry Chronicle 87(2): 274-289. https://doi.org/10.5558/tfc2011-014 DOI: https://doi.org/10.5558/tfc2011-014
Downloads
Published
Versions
- 2021-01-06 (2)
- 2020-12-30 (1)
Issue
Section
License
Copyright (c) 2020 Vincent St-Gelais, Martin Béland, Nelson Thiffault
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CCBY that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).