Gametophytic apomixis in a gymnosperm, Larix decidua Mill., results in normal male meiosis
DOI:
https://doi.org/10.21750/REFOR.19.05.126Keywords:
apomixis, Larix, meiosis, pollen mother cells, inbred line, gynogenesisAbstract
An adult tree of Larix decidua Mill., European larch, was produced from doubling one haploid female gametophyte. Whether this tree can produce normal male meiocytes is the crucial question. This adult’s pollen mother cells (PMCs), or male meiocytes, were squashed and stained. Male meiosis was normal and no abortive pollen grains were observed. This female gametophytic apomict of a conifer, a dihaploid adult, is 100% homozygous yet also reproductively competent with normal male meiosis and functional male pollen. Here we show that doubled female gametophytes can produce embryos and reproductively competent adult trees. This shows a way to gain rapid homozygosity and produce completely inbred lines for larch. This is a novel breeding shortcut reported for the first time for a conifer species.
Downloads
References
Alan AR (2021) Doubled onion (Allium cepa L.) production via in vitro gynogenesis. In: Segui-Simarro JM (ed) Doubled haploid technology. vol 1. General topics, Alliaceae, Cereals. Methods in molecular biology. Springer, NY. pp 151-169. https://doi.org/10.1007/978-1-0716-1315-3_6 DOI: https://doi.org/10.1007/978-1-0716-1315-3_6
Benkman CW, Balda RP, Smith CC (1984) Adaptations for seed dispersal and the compromises due to seed predation in limber pine. Ecology 65: 632-642. https://doi.org/10.2307/1941426 DOI: https://doi.org/10.2307/1941426
Bonga JM, Klimaszewska KK, von Aderkas P (2010) Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tiss Org Cult 100: 241-254. https://doi.org/10.1007/s11240-009-9647-2 DOI: https://doi.org/10.1007/s11240-009-9647-2
Christiansen H (1960) On the effect of low temperature on meiosis and pollen fertility in Larix decidua Mill. Silvae Genet 9:72-78.
Edwards ME, Miller H (1972) Growth regulation by ethylene in fern gametophytes III. Inhibition of spore germination. Amer J Bot 59: 458-465. https://doi.org/10.1002/j.1537-2197.1972.tb10117.x DOI: https://doi.org/10.1002/j.1537-2197.1972.tb10117.x
Ekberg I, Eriksson G, Sulikova Z (1968) Meiosis and pollen formation in Larix. Hereditas 59:427-438. https://doi.org/10.1111/j.1601-5223.1968.tb02187.x DOI: https://doi.org/10.1111/j.1601-5223.1968.tb02187.x
El-Maâtaoui M, Pichot C (2001) Microsporogenesis in the endangered species Cupressus dupreziana A. Camus: evidence for meiotic defects yielding unreduced and abortive pollen. Planta 213:543-549. https://doi.org/10.1007/s004250100531 DOI: https://doi.org/10.1007/s004250100531
Grimstone AV, Skaer RJ (1972) A guidebook to microscopical methods. Cambridge University Press, Cambridge MA.
Hall JP (1982) Microsporogenesis in Larix laricina. Can J Bot 60:797-805. https://doi.org/10.1139/b82-103 DOI: https://doi.org/10.1139/b82-103
Havey MJ (2004) A new paradigm for the breeding of longer-generation hybrid crops. ISHS Acta Hort 637: 31-39. https://doi.org/10.17660/ActaHortic.2004.637.2 DOI: https://doi.org/10.17660/ActaHortic.2004.637.2
Hörandl E (2024) Apomixis and the paradox of sex in plants. Ann Bot 134: 1-18. https://doi.org/10.1093/aob/mcae044 DOI: https://doi.org/10.1093/aob/mcae044
Illies ZM (1966) Development of aneuploidy in somatic cells of experimentally produced triploid larch. Heredity 21: 379-385. https://doi.org/10.1038/hdy.1966.39 DOI: https://doi.org/10.1038/hdy.1966.39
Johnsson H (1975) Observations on induced polyploidy in some conifers (Pinus silvestris, P. contorta, Picea abies and Larix sibirica. Silvae Genet 24: 62-68.
Kolowerzo-Lubnau A, Niedojadlo J, Widzinski M, Bednarska-Kozakiewicz E, Smolinski DJ (2015) Transcriptional activity in diplotene larch microsporocytes, with emphasis on the diffuse stage. PLOS One https://doi.org/10.1371/journal.pone.0117337 DOI: https://doi.org/10.1371/journal.pone.0117337
Kong L, von Aderkas P (2011) A novel method of cryopreservation without a cryoprotectant for immature somatic embryos of conifer. Plant Cell Tiss Org Cult 106: 115-125. https://doi.org/10.1007/s11240-010-9899-x DOI: https://doi.org/10.1007/s11240-010-9899-x
Kosinski G (1986) Megagametogenesis, fertilization, and embryo development in Larix decidua. Can J Forest Res 16: 1301-1309. https://doi.org/10.1139/x86-230 DOI: https://doi.org/10.1139/x86-230
Krutovsky KV, Tretyakova IN, Oreshkova NV, Pak ME, Kvitko OV, Vaganov EA (2014) Somaclonal variation of haploid in vitro tissue culture obtained from Siberian larch (Larix sibirica Lebed.) megagameotphytes for whole genome de novo sequencing. In Vitro Cell Dev Biol-Plant 50: 655-664. https://doi.org/10.1007/s11627-014-9619-z DOI: https://doi.org/10.1007/s11627-014-9619-z
Lelu MA, Klimaszewska KK, Charest P (1994) Somatic embryogenesis from immature and mature zygotic embryos and from cotyledons and needles of somatic plantlets of Larix. Can J Forest Res 24: 100-106. https://doi.org/10.1139/x94-015 DOI: https://doi.org/10.1139/x94-015
Luomajoki A (1977) Effects of temperature on spermatophyte male meiosis. Hereditas 85: 33-47. https://doi.org/10.1111/j.1601-5223.1977.tb00947.x DOI: https://doi.org/10.1111/j.1601-5223.1977.tb00947.x
Nagmani R, Bonga JM (1985) Embryogenesis in subcultured callus of Larix decidua. Can J Forest Res 15: 1088-1091. https://doi.org/10.1139/x85-177 DOI: https://doi.org/10.1139/x85-177
Ohri D (2021) Polyploidy in gymnosperms - a reappraisal. Silvae Genet 70: 22-38. https://doi.org/10.2478/sg-2021-0003 DOI: https://doi.org/10.2478/sg-2021-0003
Orr-Ewing AL (1976) Inbreeding Douglas-fir to the S3 generation. Silvae Genet 25: 5-6.
Owens JN, Molder M (1971) Meiosis in conifers: prolonged pachytene and diffuse diplotene stages. Can J Bot 49: 2061-2064. https://doi.org/10.1139/b71-289 DOI: https://doi.org/10.1139/b71-289
Pichot C, El-Maâtaoui M (2000) Unreduced diploid nuclei in Cupressus dupreziana A. Camus pollen. Theor Appl Genet 101: 574-579. https://doi.org/10.1007/s001220051518 DOI: https://doi.org/10.1007/s001220051518
Pichot C, El-Maâtaoui M, Raddi S, Raddi P (2001) Surrogate mother for endangered Cupressus. Nature 412: 39. https://doi.org/10.1038/35083687 DOI: https://doi.org/10.1038/35083687
Pichot C, Liens B, Nava JLR, Bachelier JB, El-Maâtaoui M (2008) Cypress surrogate mother produces haploid progeny from alien pollen. Genetics 178: 379-383. https://doi.org/10.1534/genetics.107.080572 DOI: https://doi.org/10.1534/genetics.107.080572
Rohr R, Bonga JM (1983) A method to isolate the female sexual cells of Larix decidua for cytological studies. Can J Bot 62: 1651-1658. https://doi.org/10.1139/b84-222 DOI: https://doi.org/10.1139/b84-222
Romanova LL, Tret'yakova IN (2005) Specific features of microsporogenesis in the Siberian larch under the conditions of technogenic load. Russ J Dev Biol 36: 128-134. https://doi.org/10.1007/s11174-005-0017-7 DOI: https://doi.org/10.1007/s11174-005-0017-7
Sax HJ (1932) Chromosome pairing in Larix species. J Arn Arbor 13: 368-375. https://doi.org/10.5962/p.185264 DOI: https://doi.org/10.5962/p.185264
Sax HJ (1933) Chiasma formation in Larix and Tsuga. Genetics 18: 121-128. https://doi.org/10.1093/genetics/18.2.121 DOI: https://doi.org/10.1093/genetics/18.2.121
Simola LK, Santanen A (1990) Improvement of nutrient medium for growth and embryogenesis of megagametophyte and embryo callus lines of Picea abies. Physiol Plant 80: 27-35. https://doi.org/10.1111/j.1399-3054.1990.tb04370.x DOI: https://doi.org/10.1034/j.1399-3054.1990.800105.x
Slobodnik B (2000) Analysis of sexual reproduction in European larch (Larix decidua Mill.). Dissertation. Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia 106 pp. [In English]
Slobodnik B, Guttenberger H (2000) Ovule, megaspores, and female gametophyte formation in Larix decidua Mill. (Pinaceae). Acta Biol Cracov Ser Bot 42: 93-100.
von Aderkas P, Anderson P (1993) Aneuploidy and polyploidization in haploid tissue cultures of Larix decidua. Physiol Plant 88: 73-77. https://doi.org/10.1111/j.1399-3054.1993.tb01762.x DOI: https://doi.org/10.1034/j.1399-3054.1993.880110.x

Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License CCBY that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).