Use of magnesium in bareroot pine nurseries Magnesium in nurseries

Main Article Content

David B. South


Pines with visible magnesium (Mg) deficiencies (i.e. yellow tips on needles) occur in bareroot nurseries throughout the world. The occurrence of “yellow-tips” is rare when soil pH is above 6.5 but they have occurred on sands (pH < 6.0) with less than 25 μg g-1 Mg.  If yellow-tips occur in the summer, the foliar content of yellow tips is usually less than 1,000 μg g-1 Mg. Some nurseries do not produce “yellow-tip” seedlings when irrigation water contains sufficient Mg. Factors favoring a deficiency include low soil pH, high calcium in irrigation water, frequent fertilization with nitrogen and potassium and applying too much gypsum. Although various Mg fertilizers are available, many nursery managers apply dolomite or potassium-magnesium sulfate before sowing seeds and a few also apply magnesium sulfate in July or August. Soil tests are used to determine when to fertilize before sowing and foliage tests determine when to apply Mg to green seedlings. Nursery managers who follow S.A. Wilde’s forest-based soil recommendations may apply magnesium sulfate to green seedlings even when seedbeds contain adequate levels of Mg.  When deficiency is minor, chlorosis on needle tips usually disappears before the fall equinox and, when applied at this time, Mg fertilizers have little or no effect on height growth.  This paper reviews some of the past and current uses of Mg in bareroot nurseries and highlights a need for additional research.


Download data is not yet available.


Metrics Loading ...

Article Details

How to Cite
South, David B. “Use of Magnesium in Bareroot Pine Nurseries: Magnesium in Nurseries”. REFORESTA, no. 13 (July 15, 2022): 7-44. Accessed September 26, 2023.
Review articles
Author Biography

David B. South, School of Forestry and Wildlife Sciences, Auburn University, AL

Emeritus Professor


Addoms RM (1937) Nutritional studies on loblolly pine. Plant Physiology 12(1): 199-205.

Albaugh TJ, Kiser LC, Fox TR, Allen HL, Rubilar RA, Stape JL (2014) Ecosystem nutrient retention after fertilization of Pinus taeda. Forest Sci 60(6): 1131-1139.

Aldhous JR, Atterson J (1966) Nursery investigations. Rep For Res 1965: 21-25.

Aldhous JR, Mason WL (1994) Forest Nursery Practice. Forestry Commission Bull. 111, London, UK.

Allen SE, Carlisle A, White EJ, Evans CC (1968) The plant nutrient content of rainwater. The Journal of Ecology 56(2): 497-504.

Alva AK (1993) Comparison of Mehlich 3, Mehlich 1, ammonium bicarbonate‐DTPA, 1.0 M ammonium acetate, and 0.2 M ammonium chloride for extraction of calcium, magnesium, phosphorus, and potassium for a wide range of soils. Commun Soil Sci Plan 24(7-8): 603-612.

Anderson ML (1949) Some observations on Belgian forestry. Empire Forestry Review 28(2): 117-130.

Arnold MA, Struve DK (1993) Root distribution and mineral uptake of coarse-rooted trees grown in cupric hydroxide-treated containers. HortSci 28(10): 988-992.

Argetsinger LM (1941) Chemical fertilizer treatments of Norway pine transplants in University of Michigan nursery. MF thesis. University of Michigan, Ann Arbor. 64 p.

Argo WR, Biernbaum JA, Warncke DD (1997) Geographical characterization of greenhouse irrigation water. HortTechnology 7(1): 49-55.

Auten JT (1945) Response of shortleaf and pitch pines to soil amendments and fertilizers in newly established nurseries in the central states. J Agric Res 70(12): 405-426.

Ayers RS, Westcot DW (1985) Water quality for agriculture. Irrigation and drainage paper 29. Food and Agriculture Organization of the United Nations: Rome. 174 p.

Baer NW (1984) Nutrient content in ponderosa pine foliage: seasonal variation. Agricultural Experiment Station Technical Bulletins. 77. South Dakota State University. 10 p.

Bailey D, Bilderback T, Bir D (1999) Water considerations for container production of plants. NC State University Department of Horticultural Science Horticulture Information Leaflet 557: 11p.

Bailey DA, Nelson PV, Fonteno WC (2000) Substrates pH and water quality. NC State University Department of Horticultural Science Horticulture. Raleigh, NC: 5 p.

Baule H, Fricker C (1970) The fertilizer treatment of forest trees. BLV München.

Bean D (1964) Artificial lighting fails to stimulate height growth of white pine seedlings in nursery studies. Tree Planters’ Notes 64: 23-26.

Beets PN, Oliver GR, Kimberley MO, Pearce SH, Rodgers B (2004) Genetic and soil factors associated with variation in visual magnesium deficiency symptoms in Pinus radiata. Forest Ecol Manag 189(1-3): 263-279.

Bengtson GW (ed) (1968) Forest Fertilization-Theory and Practice. Tennessee Valley Authority, Muscle Shoals, AL: 316 p.

Benzian B (1959) Nutrition problems in forest nurseries. Science of Food and Agriculture 10(12): 637-644.

Benzian B (1965) Experiments on nutrition problems in forest nurseries. Forestry Commission Bull 37. p, 251.

Benzian, B. (1967) Manuring young conifers: experiments in some English nurseries. In: Proceedings Cloquum on Forest Fertilization, Jyväskylä, Finland:142-170.

Benzian B, Smith HA (1973) Nutrient concentrations of healthy seedlings and transplants of Picea sitchensis and other conifers grown in English forest nurseries. Forestry 46(1): 55-69.

Berry CR (1980) Sewage sludge effects soil properties and growth of slash pine seedlings in a Florida nursery. In: Proceedings: Lantz CW (ed) Southern Nursery Conference. USDA Forest Service, State and Private Forestry, Atlanta, GA: 46-51.

Berenyi NM, Brenneman BB, Owens EG (1971) The effect of magnesium on the growth of loblolly pine grown in two sandhills soils in the greenhouse. Research Report 61. Westvaco, Forest Research. 6 p.

Berenyi NM, Brenneman BB, Owens EG (1972) 1971 nutrient elements greenhouse study with loblolly pine. Research Report 65. Westvaco, Forest Research. 9 p.

Binns WO, Mayhead GJ, MacKenzie JM (1980) Nutrient deficiencies of conifers in British forests. An illustrated guide. Leaflet 76. Forestry Commission. 23 p.

Blackmon BG (1969) Response of loblolly pine (Pinus taeda L.) seedlings to various levels and combinations of nitrogen and phosphorus. Baton Rouge, LA: Louisiana State University. 164 p. Ph.D. dissertation.

Bolton J, Benzian B (1970) Sulphur as a nutrient for Sitka spruce (Picea sitchensis) seedlings and radish (Raphanus sativus) grown on a sandy podzol in England. The Journal of Agricultural Science 74(3): 501-504.

Boxman AW, Krabbendam H, Bellemakers MJ, Roelofs JG (1991) Effects of ammonium and aluminium on the development and nutrition of Pinus nigra in hydroculture. Environ Pollut 73(2): 119-136.

Boyer JN, South DB (1985) Nutrient content of nursery-grown loblolly pine seedlings. Circular 282. Alabama Agricultural Experiment Station, Auburn University, Auburn University, AL: 27 p.

Boynton D, Burrell AB (1944) Potassium-induced magnesium deficiency in the McIntosh apple tree. Soil Sci 58(6): 441-454.

Bridger GL, Salutsky ML, Starostka RW (1962) Micronutrient sources, metal ammonium phosphates as fertilizers. J Agr Food Chem 10(3): 181-188.

Briggs RD (2008) Soils and nutrition: A forest nursery perspective. In: Dumroese RK; Riley LE, tech. coords. National Proceedings: Forest and Conservation Nursery Associations-2007. RMRS-P-57. USDA, Forest Service, Rocky Mountain Research Station, Fort Collins, CO: 55-64.

Brix H, van den Driessche R (1974) Mineral nutrition of container grown tree seedlings. In: Tinus RW, Stein WI, Balmer WE (eds) Proceedings, North American Containerized Forest Tree Seedling Symposium. Publication 68. Great Plains Agric. Counc. Denver, CO: 77-84.

Bryson GM, Mills HA (eds) (2014) Plant analysis handbook IV. Micro-Macro Publishing: Athens, Georgia. 600 p.

Bryson HL (1980) Pisolithus tinctorius mycobiont inoculations as a factor in performance of containerized and bare-root shortleaf pine seedlings on lignite minesoils in Panola County, Texas. DF thesis, Stephen F Austin State University, Nacogdoches. 418 p.

Bueno SW (1991) Analysis of soil chemical properties at Saratoga Forest Tree Nursery. PhD thesis, State University of New York, Syracuse. 118 p.

Bunting WR (1980) Seedling quality: growth and development—soil relationships, seedling growth and development, density control relationships. In: Proceedings of the North American Forest Tree Nursery Soils Workshop. Syracuse, NY: 21-42.

Cakmak I, Yazici AM (2010) Magnesium: a forgotten element in crop production. Better crops 94(2): 23-25. article-201006-better-crops-magnesium.pdf (

Carlson LW (1979) Guidelines for rearing containerized conifer seedlings in the Prairie Provinces. Information Report NOR-X-214. Environment Canada. Northern Forest Research Centre. Edmonton, Alberta: 62 p.

Carter DR, Allen HL, Fox TR, Albaugh TJ, Rubilar RA, Campoe OC, Cook RL (2021) A 50-year retrospective of the Forest Productivity Cooperative in the southeastern United States: regionwide trials. J Forest 119(1): 73-85.

Chaganti VN, Culman SW, Herms C, Sprunger CD, Brock C, Soto AL, Doohan D (2021) Base cation saturation ratios, soil health, and yield in organic field crops. Agron J 113(5): 4190-4200.

Chen HF (1956) Effects of peat additions and seedling density upon development and chemical composition of Douglas-fir (Pseudotsuga Menziesii) nursery stock. MF thesis, University of Washington, Seattle. 34 p.

Christersson L (1973) The effect of inorganic nutrients on water economy and hardness of conifers. 1. The effect of varying potassium, calcium, and magnesium levels on water content, transpiration rate, and the initial phase of development of frost hardiness of Pinus sylvestris L. seedlings. Studia Forestalia Suecica 103: 1-28.

Classen HG, Schimatschek HF, Wink K (2004) Magnesium in human therapy. Metal ions in biological systems 41: 41-70.

Coleman M, Dunlap I, Dutton D, Bledsoe C (1987) Nursery and field evaluation of compost-grown conifer seedlings. Tree Planters’ Notes 38(2): 22-27.

Cotton DR (1964) The Influence of soil characteristics and fertilizer treatment on growth and chemical composition of Pinus resinosa. MS thesis. McGill University, Montreal. 109 P.

Crowther EM (1950) Nutritional problems in forest nurseries. Report for 1949, Rothamsted Research: 122-129:

Culman S, Mann M, Sharma S, Saeed M, Fulford A, Lindsey L, Joern B (2019) Converting between Mehlich-3, Bray P, and ammonium acetate soil test values. ANR-75, The Ohio State University, Ohio. 4 p.

Cumming JR, Weinstein LH (1990) Aluminum-mycorrhizal interactions in the physiology of pitch pine seedlings. Plant Soil 125(1): 7-18.

Danielson RM (1966) The effect of soil fumigation on seedling growth, mycorrhizae and the associated microflora of loblolly pine (Pinus taeda L.) roots. MS thesis, North Carolina State University, Raleigh. 148 p.

Davey CB (2002) Using soil test results to determine fertilizer applications. In: Dumroese RK, Riley LE, Landis TD (eds) Proceedings, forest and conservation nursery associations-1999, 2000, and 2001. RMRS-P-24. USDA Forest Service, Rocky Mountain Research Station, Ogden UT: 22-26.

Davey CB, McNabb K (2019) The management of seedling nutrition. In: McNabb K, Pike C (eds) Nursery Guide for the Production of Bareroot Hardwood Seedlings. Agriculture Handbook 733. USDA Forest Service, Washington, DC: 75-87.

Davis AS, Jacobs DF, Wightman KE (2007a) Organic matter amendment of fallow forest tree seedling nursery soils influences soil properties and biomass of a sorghum cover crop. Tree Planter’s Notes 52(1): 4-8.

Davis M, Zue J, Clinton P (2015) Planted-forest nutrition. NZ For Res Inst Repot Info, Sheet 126 p.

Davis MR, Coker G, Parfitt RL, Simcock R, Clinton PW, Garrett LG, Watt MS (2007b) Relationships between soil and foliar nutrients in young densely planted mini-plots of Pinus radiata and Cupressus lusitanica. Forest Ecol Manag 240(1-3): 122-130.

Deines J (1973) The effects of fertilization on the growth and development of 1-0 sycamore (Platanus occidentalis L.), sweetgum (Liquidambar styraciflua L.) and green ash (Fraxinus pennsylvanica Marsh.) seedlings. PhD thesis, North Carolina State University, Raleigh. 80 p

Deshmukh J, Ray S (2019) Effectiveness of application of hot water with Epsom salt v/s plain hot water on knee joint pain among geriatric women. The Pharma Innovation Journal 8(6): 434-441.

Devitt DA, Morris RL, Fenstermaker LK (2005) Foliar damage, spectral reflectance, and tissue ion concentrations of trees sprinkle irrigated with waters of similar salinity but different chemical composition. HortSci 40(3): 819-826.

Dickson A, Leaf AL, Hosner JF (1960) Seedling quality - soil fertility relationships of white spruce, and red and white pine in nurseries. The Forestry Chronicle 36(3): 237-241.

Dobrahner J, Lowery B, Iyer JG (2004) Slow-release fertilization reduces nitrate leaching in bareroot production of Pinus strobus seedlings. In: Riley LE, Dumroese RK, Landis TD. (eds). National proceedings: Forest and Conservation Nursery Associations. RMRS-P-33. USDA Forest Service, Rocky Mountain Research Station. Fort Collins, CO: 129-139.

Donald DGM (1991) Nursery fertilization of conifer planting stock. In: van den Driessche R (ed) Mineral Nutrition of Conifer Seedlings: 135-167.

Donald DGM, Young I (1982) The growth of pine seedlings in South African forest nurseries. South African Forestry Journal 123(1): 36–50.

Dumbroff EB, Michel BE (1967) The expression of interionic relationships in Pinus elliottii. Plant Physiol 42(11): 1465-1471.

Edwards NT, Taylor GE, Adams MB, Simmons GL, Kelly JM (1990) Ozone, acidic rain and soil magnesium effects on growth and foliar pigments of Pinus taeda L. Tree Physiol 6(1): 95-104.

Engstrom HE, Stoeckeler JH (1941) Nursery practice for trees and shrubs suitable for planting on the prairie-plains. Miscellaneous publication 434. USDA. Washington, DC: 159 p.

Flaten CM (1939) A study on chlorosis of Pinus resinosa in a forest nursery, with special reference to some mineral deficiencies. MF thesis. University of Michigan, Ann Arbor: 35 p.

Flinn DW, Homans P, Craig FG (1980) Survey of the nutrient status of Pinus radiata seedlings and of soil properties in three Victorian nurseries. Aust Forestry 43(1): 58-66.

Fox WF (1904) Forest nurseries and nursery methods in Europe. JB Lyon Company, Albany.

Franklin JA, Zwiazek JJ, Renault S, Croser C (2002) Growth and elemental composition of jack pine (Pinus banksiana) seedlings treated with sodium chloride and sodium sulfate. Trees 16(4): 325-330.

Gaspar AP, Laboski CAM (2016) Base saturation: What is it? Should I be concerned? Does it affect my fertility program? In: Proceedings Wis. Crop Manage. Conf 5: 55-61.

Giertych MM, Farrar JL (1961) The effect of photoperiod and nitrogen on the growth and development of seedlings of jack pine. Can J Bot 39(5): 1247-1254.

Gleason JF (1988) Fertilization of 2-0 ponderosa pine seedlings in the nursery and field: morphology, physiology, and field performance. MS thesis, Oregon State University, Corvallis. 109 p.

Goodrich BA, Jacobi WR (2012) Foliar damage, ion content, and mortality rate of five common roadside tree species treated with soil applications of magnesium chloride. Water, Air, & Soil Pollution 223(2): 847-862.

Goslin WE (1959) Effects of deficiencies of essential elements on the development and mineral composition of seedlings of Scots pine (Pinus sylvestris L.). PhD thesis, The Ohio State University. Columbus. 114 p.

Grzebisz W (2015) Magnesium. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. Taylor & Francis, Boca Raton, FL: 199-260.

Hacskaylo J, Finn RF, Vimmerstedt JP (1969) Deficiency symptoms of some forest trees. Research Bulletin 1015. Ohio Agricultural Research and Development Center, Wooster, OH: 69 p.

Hallett RD (1980) Experience in the use of soil analysis data. In: Proceedings of the North American Forest Tree Nursery Soils Workshop. Syracuse, NY: 296-298.

Hans RR (2013) Initial growth responses to controlled release fertilizer application at establishment of commercial forestry species in South Africa. PhD thesis, Stellenbosch University. Stellenbosch. 158 p.

Hardy DH, Tucker MR, Stokes C (2013) Understanding the soil test report. Miscellaneous Publication. NC Department of Agriculture. 9 p.

Hart PBS, Widdowson JP, Watts HM, Chu-Chou M (1980) Response of Pinus caribaea var. hondurensis seedlings to mycorrhizal inoculum, phosphorus and pH. Australian Forest Research 10(4): 389-396.

Hart PBS, Widdowson JP (1981) The response of caribbean pine, green panic, and siratro to fertiliser on soils of the 'Eua Uplands, Tonga. New Zealand Journal of Experimental Agriculture 9(3-4): 255-262.

Hauer-Jákli M, Tränkner M (2019) Critical leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: a systematic review and meta-analysis from 70 years of research. Front Plant Sci 10: 766.

Heckman JR, Sims JT, Beegle DB, Coale FJ, Herbert SJ, Bruulsema TW, Bamka WJ (2003) Nutrient removal by corn grain harvest. Agron J 95(3): 587-591.

Hinesley LE, Maki TE (1980) Fall fertilization helps longleaf pine nursery stock. Southern Journal of Applied Forestry 4(3): 132-135.

Hobbs CH (1944) Studies on mineral deficiency in pine. Plant Physiol 19(4): 590-602.

Hopmans P, Flinn DW (1983) Nutrient requirements in three Victorian radiata pine nurseries with contrasting soils. Aust Forestry 46(2): 111-117.

Howell J (1932) The Effect of the concentration of the culture solution on seedlings of ponderosa pine. J Forest 30(7): 829-830.

Huberman MA (1935) Illustrated summary of Stuart Forest Nursery practice and research. Forest History Society, Durham, NC:175 p.

Hunter IR (1996) The occurrence and treatment of magnesium deficiency in radiata pine in New Zealand. New Zealand Forest Research Institute, FRI Bulletin No. 172. 136 p.

Hunter IR, Prince JM, Graham JD, Nicholson GM (1986) Growth and nutrition of Pinus radiata on rhyolitic tephra as affected by magnesium fertiliser. NZ J Forestry Sci 16(2): 152-165.

Ingestad T (1960) Magnesium deficiency in nurseries of forest trees. Vaxt-Narings-Nytt 16(3): 30-32.

Irwin KM, Duryea ML, Stone EL (1998) Fall-applied nitrogen improves performance of 1-0 slash pine nursery seedlings after outplanting. South J Appl For 22(2): 111-116.

Iyer JG (1965) Effect of Dacthal 75 on the growth of nursery stock. Tree Planters' Notes 71: 13-16.

Iyer JG, Schulte EE, Randall GW (1971) Relationship between foliar composition of red-pine and jack-pine seedlings and vulnerability to Lophodermium needle-cast disease. Plant Soil 35(1): 213-215.

Iyer JG, Dobrahner J, Lowery B, VandeHey J (2002) slow-release fertilizers in bareroot nurseries. In: Dumroese RK, Riley LE, Landis TD (eds) Proceedings, forest and conservation nursery associations-1999, 2000, and 2001. RMRS-P-24. USDA Forest Service, Rocky Mountain Research Station, Ogden UT: 112-110.

Januszek K, Stępniewska H, Błońska E, Molicka J, Kozieł K, Gdula A, Wójs A (2014) Impact of aluminum sulphate fertilizer on selected soil properties and the efficiency and quality of pine seedlings in the forest ground tree nursery. Leśne Prace Badawcze 75(2): 127-138.

Jokela EJ (2004) Nutrient management of southern pines. In: Dickens ED, Barnett JP, Hubbard WG, Jokela EJ (eds) Slash pine: still growing and growing. GTR-SRS-76. USDA Forest Service, Southern Research Station, Asheville, NC: 27-35.

Kelly JM, Barber SA (1991) Magnesium uptake kinetics in loblolly pine seedlings. Plant Soil 134(2): 227-232.

Knight PJ (1978a) Fertilizer practice in New Zealand forest nurseries. NZJ For Sci 8(1): 27-53.

Knight PJ (1978b) The nutrient content of Pinus radiata seedlings: a survey of planting stock from 17 New Zealand forest nurseries. NZJ For Sci 8(1): 54-69.

Knight PJ (1981) The maintenance of productivity in forest nurseries. In: FRI Symposium 22. New Zealand Forest Service, Forest Research Institute: 48-69.

Koll PJ (2009) Effects of conifer sawdust, hardwood sawdust, and peat on soil properties and bareroot conifer seedlings development. MS thesis, Michigan Technological University, Houghton. 42 p.

Kopittke PM, Menzies NW (2007) A review of the use of the basic cation saturation ratio and the “ideal” soil. Soil Sci Soc Am J 71(2): 259-265.

Kormanik PP, Sung SJS, Kormanik TL (1994) Irrigating and fertilizing to grow better nursery seedlings. In: Landis TD (ed). Proceedings: northeastern and intermountain forest and conservation nursery associations. GTR-RM-243. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collings, CO: 115-121.

Landis TD (1988) Management of forest nursery soils dominated by calcium salts. New Forest 2(3): 173-193.

Landis TD (1996) Secondary nutrients - magnesium. Forest Nursery Notes 16(2): 5-8.

Landis TD, Tinus RW, McDonald SE, Barnett JP (1989) Seedling nutrition and irrigation. In: The container tree nursery manual. Agricultural Handbook 674, Volume 4. USDA Forest Service, Washington, DC: 119 p.

Landis TD, Pinto JR, Davis AS (2009) Fertigation-injecting soluble fertilizers into the irrigation system. Forest Nursery Notes 29(2): 4-13.

Larsen HS, South DB, Boyer JN (1988) Foliar nitrogen content at lifting correlates with early growth of loblolly pine seedlings from 20 nurseries. South J Appl For 12(3): 181-185.

Leach GN, Gresham HH (1983) Early field performance of loblolly pine seedlings with Pisolithus tinctorius ectomycorrhizae on two lower coastal plain sites. South J Appl For 7(3): 149-153.

Leaf, AL (1968) K, Mg, and S deficiencies in forest trees. In: Forest Fertilization-Theory and Practice. Tennessee Valley Authority, Muscle Shoals, AL: 88-122.

Leski T, Aučina A, Skridaila A, Pietras M, Riepšas E, Rudawska M (2010) Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions. Mycorrhiza 20(7): 473-481.

Lipman CB (1916) A critique of the hypothesis of the lime-magnesia ratio. The Plant World 19(4): 83-105.

Lunt HA (1938) The use of fertilizers in the coniferous nursery. Bulletin 416, Connecticut Agricultural Experiment Station: New Haven CT: 721-766.

Lyle ES (1969) Mineral deficiency symptoms in loblolly pine seedlings. Agron J 61(3): 395-398.

Lyle ES, Adams F (1971) Effect of available soil calcium on taproot elongation of loblolly pine (Pinus taeda L.) seedlings. Soil Sci Soc Am J 35(5): 800-805.

Lyle ES, Pearce ND (1968) Sulfur deficiency in nursery seedlings may be caused by concentrated fertilizers. Tree Planters’ Notes 19(1): 9-10.

Madgwick HAI, Ovington JD (1959) The chemical composition of precipitation in adjacent forest and open plots. Forestry 32(1): 14-22.

Madgwick HAI (1975) Branch growth of Pinus resinosa Ait. with particular reference to potassium nutrition. Can J Forest Res 5(4): 509-514.

Majid NM (1984) Some aspects of boron, copper and iron nutrition of lodgepole pine and Douglas-fir. PhD thesis, University of British Columbia. Vancouver. 172 p.

Maki TE, Henry BW (1951) Root-rot control and soil improvement at the Ashe Forest Nursery. Occasional Paper 119. USDA Forest Service, Southern Forest Experiment Station. New Orleans, LA: 23 p.

Malavolta E, Sarruge JR, Haag HP, Vencovsky R, Santos CFO, Valsechi O, Scoton LC, Coelho RSG (1970) The relation of the concentration of macronutrients in the substrate and in the foliage to cell wall thickness and cellulose concentration in the xylem of slash pine (Pinus elliottii). Anais da Escola Superior de Agricultura Luiz de Queiroz 27: 295-333.

Manikam D, Srivastava PBL (1980) The growth response of Pinus caribaea mor. var. hondurensis bar and golf seedlings to fertilizer application on the Serdang soil series. Forest Ecol Manag 3: 127-139.

Martian, BF (1989) Soil management practices at the Big Sioux Nursery. In: Landis TD (ed) Proceedings, Intermountain Forest Nursery Association. GTR RM-184. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station: 82-85.

Marx DH (1990) Soil pH and nitrogen influence Pisolithus ectomycorrhizal development and growth of loblolly pine seedlings. Forest Sci36 (2): 224-245.

Marx DH, Cordell CE, Kenney DS, Mexal JG, Artman JD, Riffle JW, Molina RJ (1984) Commercial vegetative inoculum of Pisolithus tinctorius and inoculation techniques for development of ectomycorhizae on bare-root tree seedlings. For Sci 30(3): Monograph 25.

Mason WL, Negussie G, Hollingsworth MK (1995) Seed pretreatments and nursery regimes for raising Macedonian pine (Pinus peuce Grisebach). Forestry 68(3): 255-264.

May JT (1957) Effects of soil management practices in a forest tree nursery on soil properties and on loblolly pine seedlings. PhD thesis, Michigan State University, East Lansing. 215 p.

May JT, Johnson HH, Gilmore AR (1962) Chemical composition of southern pine seedlings. Research Paper 10. Georgia Forest Research Council, Macon, GA: 11 p.

May JT (1984) Nutrients and fertilization. In: Lantz CW ed: Southern Pine Nursery Handbook. Atlanta, GA: USDA Forest Service, Southern Region: 1201-1241.

Maxwell JW (1988) Macro and micronutrient programmes in B.C. bareroot nurseries. In: Landis TD (ed) Proceedings, Combined Meeting of the Western Forest Nursery Associations. GTR-RM-167. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO: 11-14.

McConnell RC, Klages MG (1969) Forest nursery soils of northern Idaho and western Montana. Montana Agricultural Experiment Station Montana State University, Bozeman. 33 p.

McDaniel VE (1931) Nursery practice on the Oregon forest nursery. MS thesis. Oregon State University, Corvallis. 52 p.

McNabb K, Heidbreder-Olson E (1998) Results of the 1996 irrigation water quality survey. Research report 98-05. Auburn, AL: Auburn University, Southern Forest Nursery Management Cooperative. 7 p.

Mellert KH, Göttlein A (2012) Comparison of new foliar nutrient thresholds derived from van den Burg’s literature compilation with established central European references. Eur J Forest Res 131(5): 1461-1472.

Menzies MI, Holden DG, Klomp BK (2001) Recent trends in nursery practice in New Zealand. New Forest 22(1): 3-17.

Metson AJ (1974) I. Some factors governing the availability of soil magnesium: A review, New Zealand Journal of Experimental Agriculture 2:3: 277-319.

Mexal JG, Fisher JT (1987) Organic matter amendments to a calcareous forest nursery soil. New Forest 1(4): 311-323.

Miller SP, Cumming JR (2000) Effects of serpentine soil factors on Virginia pine (Pinus virginiana) seedlings. Tree Physiol 20(16): 1129-1135.

Mitchell AD (2000) Magnesium fertiliser effects on forest soils under Pinus radiata. PhD thesis. Massey University, Palmerston North. 247 p.

Moffat AJ (1994) Nursery sterilization and inoculation regimes for alder production. Forestry 67(4): 313-327.

Möller A (1904) Karenzerscheinungen bei der Kiefer. Zeitschrift fur Forst- und Jagdwesen 36: 745-756.

Morrison IK (1974) Mineral nutrition of conifers with special reference to nutrient status interpretation: a review of literature. Publication 1343. Environment Canada, Forestry Canada. Great Lakes Forest Research Centre, Sault Ste. Marie, Ontario: 79 p.

Morrissey N, O'Reilly C (2002) Effect of root wrenching in the nursery on the quality of Japanese larch transplants. Irish Forestry 59 (1-2): 2-17.

Moser F (1933) The calcium-magnesium ratio in soils and its relation to plant growth. Jour Am Soc Agron 25: 365-377.

Munson KR (1982) Decomposition, function, and maintenance of organic matter in a sandy nursery soil. PhD thesis, University of Florida, Gainesville. 96 p.

Murison WF (1960) Macronutrient deficiency and its effect on coniferous growth.PhD thesis. University of British Columbia, Vancouver. 235 p.

Mylavarapu RS, Sanchez JF, Nguyen JH, Bartos JM (2002) Evaluation of Mehlich-1 and Mehlich-3 extraction procedures for plant nutrients in acid mineral soils of Florida. Commun Soil Sci Plan 33(5-6): 807-820.

North Carolina State Forest Nutrition Cooperative (NCSFNC) (1991) Descriptive statistics and relationships among soil and foliar characteristics in midrotation loblolly pine plantations. Res. Note 7. College of Forest Resources, North Carolina State University, Raleigh, NC: 29 p.

Olykan S, Payn T, Beets P, Kimberley M (2001) Magnesium fertilisers affected growth, upper mid-crown yellowing, and foliar nutrients of Pinus radiata, and soil magnesium concentration.New Zealand Journal of Forestry Science 31(1): 34-50.

Payn TW, Mead DJ, Will GM, Hunter IR (1995) Magnesium nutrition and dry matter allocation patterns in Pinus radiata. New Zealand Journal of Forestry Science 25(1): 39-48.

Pessin LJ (1937) The effect of nutrient deficiency on the growth of longleaf pine seedlings. USDA Forest Service, Southern Forest Experiment Station. New Orleans LA: Occasional Paper 65: 1-7.

Purnell HM (1958) Nutritional studies of Pinus radiata Don: 1. Symptoms due to deficiencies of some major elements. Aust Forestry 22(2): 82-87.

Rahmani M, Hodges AW, Kiker CF (2004) Compost users' attitudes toward compost application in Florida. Compost Science & Utilization 12(1): 55-60.

Rodríguez-Trejo DA, Duryea ML (2003) Seedling quality indicators in Pinus palustris Mill. Agrociencia 37(3): 299-307.

Ross NM (1929) Nursery practice under prairie conditions. The Forestry Chronicle 5(1): 38-44.

Rowan SJ (1971) Soil fertilization, fumigation, and temperature affect severity of black root rot of slash pine. Phytopathology 61: 184-187.

Rowan SJ (1987) Effects of potassium fertilization in the nursery on survival and growth of pine seedlings in the plantation. Georgia Forest Research Paper 68. Georgia Forestry Commission: 9 p.

Rowan SJ, Steinbeck K (1977) Seedling age and fertilization affect susceptibility of loblolly pine to fusiform rust. Phytopathology 67(24): 242-246.

Rowe DB (1996) Influence of stock plant nitrogen nutrition on mineral nutrient and carbohydrate status, photosynthesis, orthotropic shoot production, and adventitious rooting of stem cuttings from hedged loblolly pine. PhD thesis, North Carolina State University, Raleigh. 180 p.

Sadreika V (1976) Processing soil and plant data print-outs and recommendations. In: Proceedings, Northeastern Area Nurserymen's Conference, Kemptville, Ontario: 27-46.

Salmon BC, Arnold PW (1963) The uptake of magnesium under exhaustive cropping. The Journal of Agricultural Science 61(3): 421-425.

Schaedle M (1959) A study of the growth of Douglas fir (Pseudotsuga menziesii) seedlings.

MS thesis. University of British Columbia, Vancouver. 171 p.

Schenck CA (1907) Biltmore lectures on silviculture. Brandow Printing Company, NY.

Šrámek V, Fadrhonsová V, Vortelová L, Lomský B (2012) Development of chemical soil properties in the western Ore Mts.(Czech Republic) 10 years after liming. Journal of Forest Science 58(2): 57-66.

Schmidt TL (1991) Factors influencing establishment of eastern redcedar (Juniperus virginiana L.) on rangeland. PhD thesis. University of Nebraska, Lincoln. 139 p.

Schomaker CE (1969) Growth and foliar nutrition of white pine seedlings as influenced by simultaneous changes in moisture and nutrient supply. Soil Sci Soc Am J 33(4): 614-618.

Schulte EE, Kelling KE (1985) Soil Calcium to Magnesium Ratios--should You be Concerned? A2986. University of Wisconsin, Madison: 4 p.

Show SB (1930) Forest nursery and planting practice in the California pine region. Circular 92. USDA, Washington, DC: 75 p.

Slaton SH, Iyer JG (1974) Manganese compounds harmful to planting stock under some soil conditions. Tree Planters' Notes 25(2): 19-21.

Smits MM, Wallander H (2017) Role of mycorrhizal symbiosis in mineral weathering and nutrient mining from soil parent material. In: Mycorrhizal Mediation of Soil: 35-46.

Solan, FM, Bickelhaupt DH, Leaf AL (1979) Soil and plant analytical services for tree nurseries. In: Proceedings Northeastern Area Nurseryman's Conference. USDA Forest Service, Northeastern area State and Private Forestry, Broomall, PA: 35-42.

South DB (2018) Fertilizer trials for bareroot nurseries in North America. Reforesta 5: 54-76.

South DB, Davey CB (1983) The southern forest nursery soil testing program. R8-TP-4. USDA Forest Service, Southern Region, Atlanta, GA: 140-170.

South DB, Zwolinksi JB (1996) Chemicals used in southern forest nurseries. South J Appl Forest 20(3): 127-135.

South DB (2021) Use of boron in conifer nurseries. Reforesta 12:56-97.

South DB, Mitchell RJ, Dixon RK, Vedder M (1988) New-ground syndrome: an ectomycorrhizal deficiency in pine nurseries. South J Appl Forest 12(4): 234-239.

South DB, Nadel RL, Enebak SA, Bickerstaff G (2017) Sulfur and lime affect soil pH and nutrients in a sandy Pinus taeda nursery. Reforesta (4): 12-20.

South DB, Funk J, Davis CM (2018) Spring fumigation using totally impermeable film may cause ectomycorrhizal deficiencies at sandy loblolly pine nurseries. Tree Planters’ Notes 61(1): 45-56.

Spilsbury R (1949) Maintenance of soil fertility. Forest Tree Nursery Meeting, Seattle, WA: 31-35.

Starkey T, Enebak S (2012) Foliar nutrient survey of loblolly and longleaf pine seedlings. Research Report 12-02. Auburn University Southern Forest Nursery Management Cooperative, Auburn University, AL: 11 p.

Steinbeck K (1962) Effects of nutrients on slash pine seedlings grown in different media. Athens, GA: University of Georgia. 67 p. M.S. thesis.

Steven HM (1928) Nursery investigations. Forestry 70: 31-11.

Stewart JH, Hite BH (1903) Commercial fertilizers: report for 1903. West Virginia Agricultural and Forestry Experiment Station Bulletin 92.

Stoeckeler JH (1949) Correction of soil acidity in conifer nurseries. Technical note 319. USDA Forest Service, Lake States Forest Experiment Station, St. Paul, MN: 1 p.

Stoeckeler JH, Jones GW (1957) Forest nursery practice in the Lake States. Agriculture Handbook 110. USDA Forest Service, Washington, DC: 124 p.

Stoeckeler JH, Arneman HF (1960) Fertilizers in forestry. Adv Agron 12: 127–195.

Stone EL (1953) Magnesium deficiency of some northeastern pines. Soil Sci Soc Am J 17(3): 297-300.

Sucoff EI (1961) Potassium, magnesium, and calcium deficiency symptoms of loblolly and Virginia Pine seedlings. Station Paper NE-164. USDA Forest Service, Northeastern Forest Experiment Station, Upper Darby, PA: 18 p.

Sucoff EI (1962) Potassium, magnesium, and calcium requirements of Virginia pine. Station Paper NE-169. USDA Forest Service, Northeastern Forest Experiment Station, Upper Darby, PA: 16 p.

Sudworth GB (1900) The forest nursery: collection of tree seeds and propagation of seedlings. Bulletin 29. USDA, Division of Forestry. Washington, DC: 63 p.

Sumner ME, Shahandeh H, Bouton J, Hammel J (1986) Amelioration of an acid soil profile through deep liming and surface application of gypsum. Soil Sci Soc Am J 50(5): 1254-1258.

Sung SS, Black CC, Kormanik TL, Zarnoch SJ, Kormanik PP, Counce PA (1997) Fall nitrogen fertilization and the biology of Pinus taeda seedling development. Can J Forest Res 27(9): 1406-1412. https://doi/10.1139/x97-112

Swan HSD (1970) Relationships between nutrient supply, growth and nutrient concentrations in the foliage of black spruce and jack pine. Woodlands Reports 19. Pulp and paper Research institute of Canada. Pointe Claire. 46 p.

Thomas GW, Jackson RM (1983) Growth responses of Sitka spruce seedlings to mycorrhizal inoculation. New Phytologist 95(2): 223-229.

Tillotson CR (1917) Nursery practice on the national forests. Bulletin 479. USDA. Washington, DC: 86 p.

Toumey JW (1916) Seeding and planting: a manual for the guidance of forestry students, foresters, nurserymen, forest owners, and farmers. John Wiley & Sons, NY.

van den Driessche R (1963) Nursery experiments with Douglas fir. The Commonwealth Forestry Review 42(3): 242-254.

van den Driessche R (1984) Soil fertility in forest nurseries. In: Duryea ML, Landis TD (eds) Forest Nursery Manual. Martinus Nijhoff/Junk Publishers, The Hague, The Netherlands: 63-74.

van den Driessche R (1989) Nutrient deficiency symptoms in container-grown Douglas-fir and white spruce seedlings. FRDA Report 100. Victoria, BC: B.C. Ministry of Forests. 29 p

van den Driessche R (1991) Effects of nutrients on stock performance in the forest. In: van den Driessche (ed) Mineral Nutrition of Conifer Seedlings, CRC Press, Boca Raton: 229-260.

VanderSchaaf C, McNabb K (2004) Winter nitrogen fertilization of loblolly pine seedlings. Plant Soil 265(1): 295-299.

Van Goor CP (1963) Bemestingsvoorschrift voor naaldhoutculturen. Ned Bosh Tijdschr 35(3): 129-142.

Van Goor CP (1970) Fertilization of conifer plantations. Irish Forestry 27(2): 68-80.

van Lear DH, Smith WH (1972) Relationships between macro-and micronutrient nutrition of slash pine on three coastal plain soils. Plant Soil 36(1-3): 331-347.

Van Rees KCJ, Comerford NB, McFee WW (1990) Modeling potassium uptake by slash pine seedlings from low‐potassium‐supplying soils. Soil Sci Soc Am J 54(5): 1413-1421.

van Schöll L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, Van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303(1): 35-47.

Voigt GK (1955) The effect of applied fungicides, herbicides, and insecticides on the content of nutrient elements in tissue of coniferous seedlings. Soil Sci Soc Am J 19(2): 237-239.

Voigt GK, Stoeckeler JH, Wilde SA (1958) Response of coniferous seedlings to soil applications of calcium and magnesium fertilizers. Soil Sci Soc Am J 22(4): 343-345.

Wahlenberg WG (1930) Experiments in use of fertilizers in growing forest planting material at Savenac Nursery. Circular 125. USDA, Washington, DC: 38 p.

Walker RF, McLaughlin SB (1997) Effects of acidic precipitation and ectomycorrhizal inoculation on growth, mineral nutrition, and xylem water potential of juvenile loblolly pine and white oak. J Sustain Forest 5(3-4): 27-49.

Wall RE (1978) Conifer seedling growth in limed peat in copper naphthenate-treated flats. Tree Planters’ Notes 29(1): 18-21.

Wall MM (1994) Influence of fertilization on nutrient status and size of bare-root Pinus taeda L. seedlings. MS thesis, Texas A&M University, College Station. 98 p.

Wang X, Zabowski D (1998) Nutrient composition of Douglas-fir rhizosphere and bulk soil solutions. Plant Soil 200(1): 13-20.

White EH, Comerford NB, Bickelhaupt DH (1980) Interpretation of nursery soil and seedling analysis to benefit nursery soil management. In: Proceedings of the North American Forest Tree Nursery Soils Workshop. Syracuse, NY: 269-287.

Wilde SA (1938) Soil fertility standards for growing northern conifers in forest nurseries. J Agric Res 57: 945-952.

Wilde SA (1946) Forests soils and forests growth. Chronica Botanica Company, Waltham.

Wilde SA (1954) Reaction of soils; facts and fallacies. Ecology 35(1): 89-91.

Wilde SA (1958) Forest soils, their properties and relation to silviculture. Ronald Press, NY.

Wilde SA, Kopitke JC (1940) Base exchange properties of nursery soils and the application of potash fertilizers. J Forest 38(4): 330-332.

Wilde SA, Krause H (1959) Soil analysis in service of nursery practice. Tree Planters' Notes 37: 1-3.

Will GM (1961) Magnesium deficiency in pine seedlings growing in pumice soil nurseries. New Zealand Journal of Agricultural Research 4(1-2): 151-160.

Will GM (1962) The uptake of nutrients from sterilised forest-nursery soils. New Zealand Journal of Agricultural Research 5(5-6): 425-432.

Will GM (1985) Nutrient deficiencies and fertilizer use in New Zealand exotic forests. NZ For Res Inst Bull 97: 53 p.

Will GM, Knight PJ (1968) Pumice soils as a medium for tree growth: pot trial evaluation of nutrient supply. New Zealand Journal of Forestry 13(1): 50-65.

Woodwell GM (1958) Factors controlling growth of pond pine seedlings in organic soils of the Carolinas. Ecol Monogr 28(3): 220-236.

Youngberg CT (1952) Maintenance of nursery soil fertility. In: Nursery practice committee. New Westminster, BC: 16-31.

Youngberg CT (1958) The uptake of nutrients by western conifers in forest nurseries. J Forest 56(5): 337-340.

Youngberg CT (1984) Soil tissue analysis: tools for maintaining soil fertility. In: Duryea ML, Landis TD (eds) Forest nursery manual. Martinus Nijhoff/Junk Publishers. The Hague, Netherlands, pp. 75-80.

Zarger TC (1964) Comparison of slowly and rapidly available nitrogen fertilizers for nursery production of pine seedlings. Tree Planters’ Notes 66: 8-10.

Zhang J, George E (2010) Effect of the ectomycorrhizal fungus Paxillus involutus on growth and cation (potassium, calcium, and magnesium) nutrition of Pinus sylvestris L. in semi-hydroponic culture. J Plant Nutr 33(5): 736-751.